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Chapter 12

Descriptive Statistics

At this point, we need to consider the basics of data analysis in psychological
research in more detail. In this chapter, we focus on descriptive statistics—a set of
techniques for summarizing and displaying the data from your sample. We look
first at some of the most common techniques for describing single variables,
followed by some of the most common techniques for describing statistical
relationships between variables. We then look at how to present descriptive
statistics in writing and also in the form of tables and graphs that would be
appropriate for an American Psychological Association (APA)-style research report.
We end with some practical advice for organizing and carrying out your analyses.
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Chapter 12 Descriptive Statistics

12.1 Describing Single Variables

1. A set of techniques for
summarizing and displaying
data.

. The way the scores on a
variable are distributed across
the levels of that variable.

. A table for displaying the
distribution of a variable. The
first column lists the values of
the variable, and the second
column lists the frequency of
each score.

LEARNING OBJECTIVES

1. Use frequency tables and histograms to display and interpret the
distribution of a variable.

2. Compute and interpret the mean, median, and mode of a distribution
and identify situations in which the mean, median, or mode is the most
appropriate measure of central tendency.

3. Compute and interpret the range and standard deviation of a
distribution.

4. Compute and interpret percentile ranks and z scores.

Descriptive statistics' refers to a set of techniques for summarizing and displaying
data. Let us assume here that the data are quantitative and consist of scores on one
or more variables for each of several study participants. Although in most cases the
primary research question will be about one or more statistical relationships
between variables, it is also important to describe each variable individually. For
this reason, we begin by looking at some of the most common techniques for
describing single variables.

The Distribution of a Variable

Every variable has a distribution®, which is the way the scores are distributed
across the levels of that variable. For example, in a sample of 100 college students,
the distribution of the variable “number of siblings” might be such that 10 of them
have no siblings, 30 have one sibling, 40 have two siblings, and so on. In the same
sample, the distribution of the variable “sex” might be such that 44 have a score of
“male” and 56 have a score of “female.”

Frequency Tables

One way to display the distribution of a variable is in a frequency table’. Table 12.1
"Frequency Table Showing a Hypothetical Distribution of Scores on the Rosenberg
Self-Esteem Scale", for example, is a frequency table showing a hypothetical
distribution of scores on the Rosenberg Self-Esteem Scale for a sample of 40 college
students. The first column lists the values of the variable—the possible scores on
the Rosenberg scale—and the second column lists the frequency of each score. This
table shows that there were three students who had self-esteem scores of 24, five
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12.1 Describing Single Variables

who had self-esteem scores of 23, and so on. From a frequency table like this, one
can quickly see several important aspects of a distribution, including the range of
scores (from 15 to 24), the most and least common scores (22 and 17, respectively),
and any extreme scores that stand out from the rest.

Table 12.1 Frequency Table Showing a Hypothetical Distribution of Scores on the
Rosenberg Self-Esteem Scale

Self-esteem | Frequency
24 3
23 5
22 10
21 8
20 5
19 3
18 3
17 0
16 2
15 1

There are a few other points worth noting about frequency tables. First, the levels
listed in the first column usually go from the highest at the top to the lowest at the
bottom, and they usually do not extend beyond the highest and lowest scores in the
data. For example, although scores on the Rosenberg scale can vary from a high of
30 to a low of 0, Table 12.1 "Frequency Table Showing a Hypothetical Distribution of
Scores on the Rosenberg Self-Esteem Scale" only includes levels from 24 to 15
because that range includes all the scores in this particular data set. Second, when
there are many different scores across a wide range of values, it is often better to
create a grouped frequency table, in which the first column lists ranges of values
and the second column lists the frequency of scores in each range. Table 12.2 "A
Grouped Frequency Table Showing a Hypothetical Distribution of Reaction Times",
for example, is a grouped frequency table showing a hypothetical distribution of
simple reaction times for a sample of 20 participants. In a grouped frequency table,
the ranges must all be of equal width, and there are usually between five and 15 of
them. Finally, frequency tables can also be used for categorical variables, in which
case the levels are category labels. The order of the category labels is somewhat
arbitrary, but they are often listed from the most frequent at the top to the least
frequent at the bottom.
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Chapter 12 Descriptive Statistics

4. A graph for displaying the
distribution of a variable. The
x-axis represents the values of
the variable, and the y-axis
represents the frequency of
each score.

12.1 Describing Single Variables

Table 12.2 A Grouped Frequency Table Showing a Hypothetical Distribution of
Reaction Times

Reaction time (ms) | Frequency
241-260 1
221-240 2
201-220 2
181-200 9
161-180 4
141-160 2
Histograms

A histogram® is a graphical display of a distribution. It presents the same
information as a frequency table but in a way that is even quicker and easier to
grasp. The histogram in Figure 12.1 "Histogram Showing the Distribution of Self-
Esteem Scores Presented in " presents the distribution of self-esteem scores in
Table 12.1 "Frequency Table Showing a Hypothetical Distribution of Scores on the
Rosenberg Self-Esteem Scale". The x-axis of the histogram represents the variable
and the y-axis represents frequency. Above each level of the variable on the x-axis is
a vertical bar that represents the number of individuals with that score. When the
variable is quantitative, as in this example, there is usually no gap between the bars.
When the variable is categorical, however, there is usually a small gap between
them. (The gap at 17 in this histogram reflects the fact that there were no scores of
17 in this data set.)
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12.1 Describing Single Variables

Figure 12.1 Histogram Showing the Distribution of Self-Esteem Scores Presented in Table 12.1 "Frequency
Table Showing a Hypothetical Distribution of Scores on the Rosenberg Self-Esteem Scale"
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Frequency
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Self-Esteem

Distribution Shapes

When the distribution of a quantitative variable is displayed in a histogram, it has a
shape. The shape of the distribution of self-esteem scores in Figure 12.1 "Histogram
Showing the Distribution of Self-Esteem Scores Presented in " is typical. There is a
peak somewhere near the middle of the distribution and “tails” that taper in either
direction from the peak. The distribution of Figure 12.1 "Histogram Showing the
Distribution of Self-Esteem Scores Presented in " is unimodal, meaning it has one
distinct peak, but distributions can also be bimodal, meaning they have two distinct
peaks. Figure 12.2 "Histogram Showing a Hypothetical Bimodal Distribution of
Scores on the Beck Depression Inventory", for example, shows a hypothetical
bimodal distribution of scores on the Beck Depression Inventory. Distributions can
also have more than two distinct peaks, but these are relatively rare in
psychological research.

303



Chapter 12 Descriptive Statistics

Figure 12.2 Histogram Showing a Hypothetical Bimodal Distribution of Scores on the Beck Depression
Inventory
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Another characteristic of the shape of a distribution is whether it is symmetrical or
skewed. The distribution in the center of Figure 12.3 "Histograms Showing
Negatively Skewed, Symmetrical, and Positively Skewed Distributions" is
symmetrical’. Its left and right halves are mirror images of each other. The
distribution on the left is negatively skewed®, with its peak shifted toward the
upper end of its range and a relatively long negative tail. The distribution on the
right is positively skewed, with its peak toward the lower end of its range and a
relatively long positive tail.

Figure 12.3 Histograms Showing Negatively Skewed, Symmetrical, and Positively Skewed Distributions

Negatively Skewed Symmetrical Positively Skewed

5. Refers to a distribution in ‘ ‘ ‘
which the left and right sides
are near mirror images of each
other.

An outlier’ is an extreme score that is much higher or lower than the rest of the

6. Refers to an asymmetrical ] AR . )
scores in the distribution. Sometimes outliers represent truly extreme scores on the

distribution. A positively

skewed distribution has a variable of interest. For example, on the Beck Depression Inventory, a single
relatively long positive tail, clinically depressed person might be an outlier in a sample of otherwise happy and
and a negatively skewed hieh-functioni H tli ] t

distribution has a relatively igh-functioning peers. However, outliers can also represent errors or

long negative tail. misunderstandings on the part of the researcher or participant, equipment

malfunctions, or similar problems. We will say more about how to interpret outliers

7. An extreme score that is far and what to do about them later in this chapter.

removed from the rest of the
scores in the distribution.
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10.

12.1 Describing Single Variables

. The middle of a distribution.

The mean, median, and mode
are measures of central
tendency.

. The most common measure of

central tendency. The sum of
the scores divided by the
number of scores.

A measure of central tendency.

The value such that half the
scores in the distribution are
lower than it and half are
higher than it.

Measures of Central Tendency and Variability

It is also useful to be able to describe the characteristics of a distribution more
precisely. Here we look at how to do this in terms of two important characteristics:
their central tendency and their variability.

Central Tendency

The central tendency® of a distribution is its middle—the point around which the
scores in the distribution tend to cluster. (Another term for central tendency is
average.) Looking back at Figure 12.1 "Histogram Showing the Distribution of Self-
Esteem Scores Presented in ", for example, we can see that the self-esteem scores
tend to cluster around the values of 20 to 22. Here we will consider the three most
common measures of central tendency: the mean, the median, and the mode.

The mean’ of a distribution (symbolized M) is the sum of the scores divided by the
number of scores. As a formula, it looks like this:

In this formula, the symbol X (the Greek letter sigma) is the summation sign and
means to sum across the values of the variable X. N represents the number of
scores. The mean is by far the most common measure of central tendency, and
there are some good reasons for this. It usually provides a good indication of the
central tendency of a distribution, and it is easily understood by most people. In
addition, the mean has statistical properties that make it especially useful in doing
inferential statistics.

An alternative to the mean is the median. The median'’ is the middle score in the
sense that half the scores in the distribution are less than it and half are greater
than it. The simplest way to find the median is to organize the scores from lowest to
highest and locate the score in the middle. Consider, for example, the following set
of seven scores:

841214323

To find the median, simply rearrange the scores from lowest to highest and locate
the one in the middle.

233481214
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11. A measure of central tendency.
The most frequently occurring
score in the distribution.

12. The extent to which the scores
in a distribution vary around
their central tendency.

12.1 Describing Single Variables

In this case, the median is 4 because there are three scores lower than 4 and three
scores higher than 4. When there is an even number of scores, there are two scores
in the middle of the distribution, in which case the median is the value halfway
between them. For example, if we were to add a score of 15 to the preceding data
set, there would be two scores (both 4 and 8) in the middle of the distribution, and
the median would be halfway between them (6).

One final measure of central tendency is the mode. The mode'! is the most frequent
score in a distribution. In the self-esteem distribution presented in Table 12.1
"Frequency Table Showing a Hypothetical Distribution of Scores on the Rosenberg
Self-Esteem Scale" and Figure 12.1 "Histogram Showing the Distribution of Self-
Esteem Scores Presented in ", for example, the mode is 22. More students had that
score than any other. The mode is the only measure of central tendency that can
also be used for categorical variables.

In a distribution that is both unimodal and symmetrical, the mean, median, and
mode will be very close to each other at the peak of the distribution. In a bimodal or
asymmetrical distribution, the mean, median, and mode can be quite different. In a
bimodal distribution, the mean and median will tend to be between the peaks, while
the mode will be at the tallest peak. In a skewed distribution, the mean will differ
from the median in the direction of the skew (i.e., the direction of the longer tail).
For highly skewed distributions, the mean can be pulled so far in the direction of
the skew that it is no longer a good measure of the central tendency of that
distribution. Imagine, for example, a set of four simple reaction times of 200, 250,
280, and 250 milliseconds (ms). The mean is 245 ms. But the addition of one more
score of 5,000 ms—perhaps because the participant was not paying
attention—would raise the mean to 1,445 ms. Not only is this measure of central
tendency greater than 80% of the scores in the distribution, but it also does not
seem to represent the behavior of anyone in the distribution very well. This is why
researchers often prefer the median for highly skewed distributions (such as
distributions of reaction times).

Keep in mind, though, that you are not required to choose a single measure of
central tendency in analyzing your data. Each one provides slightly different
information, and all of them can be useful.

Measures of Variability

The variability'” of a distribution is the extent to which the scores vary around
their central tendency. Consider the two distributions in Figure 12.4 "Histograms

Showing Hypothetical Distributions With the Same Mean, Median, and Mode (10)

but With Low Variability (Top) and High Variability (Bottom)", both of which have
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13. A measure of variability. The
difference between the highest
and lowest scores in the
distribution.

12.1 Describing Single Variables

the same central tendency. The mean, median, and mode of each distribution are
10. Notice, however, that the two distributions differ in terms of their variability.
The top one has relatively low variability, with all the scores relatively close to the
center. The bottom one has relatively high variability, with the scores are spread
across a much greater range.

Figure 12.4 Histograms Showing Hypothetical Distributions With the Same Mean, Median, and Mode (10) but
With Low Variability (Top) and High Variability (Bottom)

Frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frequency

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X

One simple measure of variability is the range'®, which is simply the difference
between the highest and lowest scores in the distribution. The range of the self-
esteem scores in Table 12.1 "Frequency Table Showing a Hypothetical Distribution
of Scores on the Rosenberg Self-Esteem Scale", for example, is the difference
between the highest score (24) and the lowest score (15). That is, the range is 24 - 15
=9, Although the range is easy to compute and understand, it can be misleading
when there are outliers. Imagine, for example, an exam on which all the students
scored between 90 and 100. It has a range of 10. But if there was a single student
who scored 20, the range would increase to 80—giving the impression that the
scores were quite variable when in fact only one student differed substantially from
the rest.

307



Chapter 12 Descriptive Statistics

By far the most common measure of variability is the standard deviation. The
standard deviation'* of a distribution is, roughly speaking, the average distance
between the scores and the mean. For example, the standard deviations of the
distributions in Figure 12.4 "Histograms Showing Hypothetical Distributions With
the Same Mean, Median, and Mode (10) but With Low Variability (Top) and High
Variability (Bottom)" are 1.69 for the top distribution and 4.30 for the bottom one.
That is, while the scores in the top distribution differ from the mean by about 1.69
units on average, the scores in the bottom distribution differ from the mean by
about 4.30 units on average.

Computing the standard deviation involves a slight complication. Specifically, it
involves finding the difference between each score and the mean, squaring each
difference, finding the mean of these squared differences, and finally finding the
square root of that mean. The formula looks like this:

(X -M)
N

SD =

The computations for the standard deviation are illustrated for a small set of data in
Table 12.3 "Computations for the Standard Deviation". The first column is a set of
eight scores that has a mean of 5. The second column is the difference between each
score and the mean. The third column is the square of each of these differences.
Notice that although the differences can be negative, the squared differences are
always positive—meaning that the standard deviation is always positive. At the
bottom of the third column is the mean of the squared differences, which is also
called the variance'® (symbolized SD?). Although the variance is itself a measure of
variability, it generally plays a larger role in inferential statistics than in descriptive
statistics. Finally, below the variance is the square root of the variance, which is the
standard deviation.

Table 12.3 Computations for the Standard Deviation

14. The most common measure of

variability. The square root of 2

the mean of the squared O x-M)

differences between the scores 3 2 4

and the mean. Also the square

root of the variance. 5 0 0
15. A measure of variability. The 4 1 1

mean of the squared

differences between the scores 2 3 9

and the mean. Also the square

of the standard deviation. 7 2 4
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16. A measure of the location of a
score within its distribution.
The percentage of scores below
a particular score.

12.1 Describing Single Variables

X |[x-m (x - M)?
6 1 1
5 0 0
8 3 9
M=5 SD* = 2 =350
SD = 4/3.50 = 1.87

NorN-1

If you have already taken a statistics course, you may have learned to divide the
sum of the squared differences by N - 1 rather than by N when you compute the
variance and standard deviation. Why is this?

By definition, the standard deviation is the square root of the mean of the
squared differences. This implies dividing the sum of squared differences by N,
as in the formula just presented. Computing the standard deviation this way is
appropriate when your goal is simply to describe the variability in a sample.
And learning it this way emphasizes that the variance is in fact the mean of the
squared differences—and the standard deviation is the square root of this mean.

However, most calculators and software packages divide the sum of squared
differences by N - 1. This is because the standard deviation of a sample tends to
be a bit lower than the standard deviation of the population the sample was
selected from. Dividing the sum of squares by N - 1 corrects for this tendency
and results in a better estimate of the population standard deviation. Because
researchers generally think of their data as representing a sample selected
from a larger population—and because they are generally interested in drawing
conclusions about the population—it makes sense to routinely apply this
correction.

Percentile Ranks and z Scores

In many situations, it is useful to have a way to describe the location of an
individual score within its distribution. One approach is the percentile rank. The
percentile rank’® of a score is the percentage of scores in the distribution that are
lower than that score. Consider, for example, the distribution in Table 12.1
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17. A measure of the location of a
score within its distribution.
The score minus the mean,

divided by the standard
deviation.

12.1 Describing Single Variables

"Frequency Table Showing a Hypothetical Distribution of Scores on the Rosenberg
Self-Esteem Scale". For any score in the distribution, we can find its percentile rank
by counting the number of scores in the distribution that are lower than that score
and converting that number to a percentage of the total number of scores. Notice,
for example, that five of the students represented by the data in Table 12.1
"Frequency Table Showing a Hypothetical Distribution of Scores on the Rosenberg
Self-Esteem Scale" had self-esteem scores of 23. In this distribution, 32 of the 40
scores (80%) are lower than 23. Thus each of these students has a percentile rank of
80. (It can also be said that they scored “at the 80th percentile.”) Percentile ranks
are often used to report the results of standardized tests of ability or achievement.
If your percentile rank on a test of verbal ability were 40, for example, this would
mean that you scored higher than 40% of the people who took the test.

Another approach is the z score. The z score'” for a particular individual is the
difference between that individual’s score and the mean of the distribution, divided
by the standard deviation of the distribution:

X-M
‘T 78D

A z score indicates how far above or below the mean a raw score is, but it expresses
this in terms of the standard deviation. For example, in a distribution of
intelligence quotient (IQ) scores with a mean of 100 and a standard deviation of 15,
an IQ score of 110 would have a z score of (110 - 100) / 15 = +0.67. In other words, a
score of 110 is 0.67 standard deviations (approximately two thirds of a standard
deviation) above the mean. Similarly, a raw score of 85 would have a z score of (85 -
100) / 15 = -1.00. In other words, a score of 85 is one standard deviation below the
mean.

There are several reasons that z scores are important. Again, they provide a way of
describing where an individual’s score is located within a distribution and are
sometimes used to report the results of standardized tests. They also provide one
way of defining outliers. For example, outliers are sometimes defined as scores that
have z scores less than -3.00 or greater than +3.00. In other words, they are defined
as scores that are more than three standard deviations from the mean. Finally, z
scores play an important role in understanding and computing other statistics, as
we will see shortly.
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Online Descriptive Statistics

Although many researchers use commercially available software such as SPSS
and Excel to analyze their data, there are several free online analysis tools that
can also be extremely useful. Many allow you to enter or upload your data and
then make one click to conduct several descriptive statistical analyses. Among
them are the following.

Rice Virtual Lab in Statistics
http://onlinestatbook.com/stat_analysis/index.html
VassarStats

http://faculty.vassar.edu/lowry/VassarStats.html

Bright Stat

http://www.brightstat.com

For a more complete list, see http://statpages.org/index.html.
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KEY TAKEAWAYS

« Every variable has a distribution—a way that the scores are distributed

across the levels. The distribution can be described using a frequency
table and histogram. It can also be described in words in terms of its
shape, including whether it is unimodal or bimodal, and whether it is
symmetrical or skewed.

The central tendency, or middle, of a distribution can be described
precisely using three statistics—the mean, median, and mode. The mean
is the sum of the scores divided by the number of scores, the median is
the middle score, and the mode is the most common score.

The variability, or spread, of a distribution can be described precisely
using the range and standard deviation. The range is the difference
between the highest and lowest scores, and the standard deviation is
roughly the average amount by which the scores differ from the mean.
The location of a score within its distribution can be described using
percentile ranks or z scores. The percentile rank of a score is the
percentage of scores below that score, and the z score is the difference
between the score and the mean divided by the standard deviation.

EXERCISES

1. Practice: Make a frequency table and histogram for the following
data. Then write a short description of the shape of the
distribution in words.

11, 8,9,12,9, 10,12, 13, 11, 13, 12, 6, 10, 17, 13, 11, 12, 12, 14, 14

. Practice: For the data in Exercise 1, compute the mean, median, mode,

standard deviation, and range.

. Practice: Using the data in Exercises 1 and 2, find (a) the percentile

ranks for scores of 9 and 14 and (b) the z scores for scores of 8 and 12.
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12.2 Describing Statistical Relationships

LEARNING OBJECTIVES

1. Describe differences between groups in terms of their means and
standard deviations, and in terms of Cohen’s d.

2. Describe correlations between quantitative variables in terms of
Pearson’s r.

As we have seen throughout this book, most interesting research questions in
psychology are about statistical relationships between variables. Recall that there is
a statistical relationship between two variables when the average score on one
differs systematically across the levels of the other. In this section, we revisit the
two basic forms of statistical relationship introduced earlier in the
book—differences between groups or conditions and relationships between
quantitative variables—and we consider how to describe them in more detail.

Differences Between Groups or Conditions

Differences between groups or conditions are usually described in terms of the
mean and standard deviation of each group or condition. For example, Thomas
Ollendick and his colleagues conducted a study in which they evaluated two one-
session treatments for simple phobias in children (Ollendick et al., 2009).0llendick,
T. H., Ost, L.-G., Reuterskiéld, L., Costa, N., Cederlund, R., Sirbu, C.,..Jarrett, M. A.
(2009). One-session treatments of specific phobias in youth: A randomized clinical
trial in the United States and Sweden. Journal of Consulting and Clinical Psychology, 77,
504-516. They randomly assigned children with an intense fear (e.g., to dogs) to one
of three conditions. In the exposure condition, the children actually confronted the
object of their fear under the guidance of a trained therapist. In the education
condition, they learned about phobias and some strategies for coping with them. In
the waitlist control condition, they were waiting to receive a treatment after the
study was over. The severity of each child’s phobia was then rated on a 1-to-8 scale
by a clinician who did not know which treatment the child had received. (This was
one of several dependent variables.) The mean fear rating in the education
condition was 4.83 with a standard deviation of 1.52, while the mean fear rating in
the exposure condition was 3.47 with a standard deviation of 1.77. The mean fear
rating in the control condition was 5.56 with a standard deviation of 1.21. In other
words, both treatments worked, but the exposure treatment worked better than the
education treatment. As we have seen, differences between group or condition
means can be presented in a bar graph like that in Figure 12.5 "Bar Graph Showing
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18. Another name for measures of
relationship strength,
including Cohen’s d and
Pearson’s r.

19. A measure of relationship
strength or “effect size” for a
difference between two groups
or conditions.

Mean Clinician Phobia Ratings for Children in Two Treatment Conditions", where
the heights of the bars represent the group or condition means. We will look more
closely at creating American Psychological Association (APA)-style bar graphs
shortly.

Figure 12.5 Bar Graph Showing Mean Clinician Phobia Ratings for Children in Two Treatment Conditions

Clinician Rating of Severity

Education Exposure Control

Condition

It is also important to be able to describe the strength of a statistical relationship,
which is often referred to as the effect size'®. The most widely used measure of

effect size for differences between group or condition means is called Cohen’s d*’,
which is the difference between the two means divided by the standard deviation:

M, - M,
SD

d=

In this formula, it does not really matter which mean is M; and which is M. If there
is a treatment group and a control group, the treatment group mean is usually M;
and the control group mean is My. Otherwise, the larger mean is usually M; and the
smaller mean M; so that Cohen’s d turns out to be positive. The standard deviation
in this formula is usually a kind of average of the two group standard deviations
called the pooled-within groups standard deviation. To compute the pooled within-
groups standard deviation, add the sum of the squared differences for Group 1 to
the sum of squared differences for Group 2, divide this by the sum of the two
sample sizes, and then take the square root of that. Informally, however, the
standard deviation of either group can be used instead.

Conceptually, Cohen’s d is the difference between the two means expressed in
standard deviation units. (Notice its similarity to a z score, which expresses the

12.2 Describing Statistical Relationships 314



Chapter 12 Descriptive Statistics

difference between an individual score and a mean in standard deviation units.) A
Cohen’s d of 0.50 means that the two group means differ by 0.50 standard deviations
(half a standard deviation). A Cohen’s d of 1.20 means that they differ by 1.20
standard deviations. But how should we interpret these values in terms of the
strength of the relationship or the size of the difference between the means? Table
12.4 "Guidelines for Referring to Cohen’s " presents some guidelines for
interpreting Cohen’s d values in psychological research (Cohen, 1992).Cohen, J.
(1992). A power primer. Psychological Bulletin, 112, 155-159. Values near 0.20 are
considered small, values near 0.50 are considered medium, and values near 0.80 are
considered large. Thus a Cohen’s d value of 0.50 represents a medium-sized
difference between two means, and a Cohen’s d value of 1.20 represents a very large
difference in the context of psychological research. In the research by Ollendick and
his colleagues, there was a large difference (d = 0.82) between the exposure and
education conditions.

Table 12.4 Guidelines for Referring to Cohen’s d and Pearson’s r Values as “Strong,”
“Medium,” or “Weak”

Relationship strength | Cohen’s d | Pearson’s r
Strong/large +0.80 +0.50
Medium +0.50 +0.30
Weak/small £0.20 £0.10

Cohen’s d is useful because it has the same meaning regardless of the variable being
compared or the scale it was measured on. A Cohen’s d of 0.20 means that the two
group means differ by 0.20 standard deviations whether we are talking about scores
on the Rosenberg Self-Esteem scale, reaction time measured in milliseconds,
number of siblings, or diastolic blood pressure measured in millimeters of mercury.
Not only does this make it easier for researchers to communicate with each other
about their results, it also makes it possible to combine and compare results across
different studies using different measures.

Be aware that the term effect size can be misleading because it suggests a causal
relationship—that the difference between the two means is an “effect” of being in
one group or condition as opposed to another. Imagine, for example, a study
showing that a group of exercisers is happier on average than a group of
nonexercisers, with an “effect size” of d = 0.35. If the study was an
experiment—with participants randomly assigned to exercise and no-exercise
conditions—then one could conclude that exercising caused a small to medium-
sized increase in happiness. If the study was correlational, however, then one could
conclude only that the exercisers were happier than the nonexercisers by a small to
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medium-sized amount. In other words, simply calling the difference an “effect size”
does not make the relationship a causal one.
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Sex Differences Expressed as Cohen’s d

Researcher Janet Shibley Hyde has looked at the results of numerous studies on
psychological sex differences and expressed the results in terms of Cohen’s d
(Hyde, 2007).Hyde, J. S. (2007). New directions in the study of gender
similarities and differences. Current Directions in Psychological Science, 16,
259-263. Following are a few of the values she has found, averaging across
several studies in each case. (Note that because she always treats the mean for
men as Mj and the mean for women as M, positive values indicate that men

score higher and negative values indicate that women score higher.)

Mathematical problem solving | +0.08
Reading comprehension -0.09
Smiling -0.40
Aggression +0.50
Attitudes toward casual sex +0.81
Leadership effectiveness -0.02

Hyde points out that although men and women differ by a large amount on
some variables (e.g., attitudes toward casual sex), they differ by only a small
amount on the vast majority. In many cases, Cohen’s d is less than 0.10, which
she terms a “trivial” difference. (The difference in talkativeness discussed in
Chapter 1 "The Science of Psychology" was also trivial: d = 0.06.) Although
researchers and nonresearchers alike often emphasize sex differences, Hyde has
argued that it makes at least as much sense to think of men and women as
fundamentally similar. She refers to this as the “gender similarities hypothesis.”

Figure 12.6
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Research on psychological sex
differences has shown that there
is essentially no difference in the
leadership effectiveness of
women and men.

© Thinkstock

Correlations Between Quantitative Variables

As we have seen throughout the book, many interesting statistical relationships
take the form of correlations between quantitative variables. For example,
researchers Kurt Carlson and Jacqueline Conard conducted a study on the
relationship between the alphabetical position of the first letter of people’s last
names (from A = 1 to Z = 26) and how quickly those people responded to consumer
appeals (Carlson & Conard, 2011).Carlson, K. A., & Conard, J. M. (2011). The last
name effect: How last name influences acquisition timing. Journal of Consumer
Research. doi: 10.1086/658470 In one study, they sent e-mails to a large group of
MBA students, offering free basketball tickets from a limited supply. The result was
that the further toward the end of the alphabet students’ last names were, the
faster they tended to respond. These results are summarized in Figure 12.7 "Line
Graph Showing the Relationship Between the Alphabetical Position of People’s Last
Names and How Quickly Those People Respond to Offers of Consumer Goods".
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Figure 12.7
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Such relationships are often presented using line graphs or scatterplots, which
show how the level of one variable differs across the range of the other. In the line
graph in Figure 12.7 "Line Graph Showing the Relationship Between the
Alphabetical Position of People’s Last Names and How Quickly Those People
Respond to Offers of Consumer Goods", for example, each point represents the
mean response time for participants with last names in the first, second, third, and
fourth quartiles (or quarters) of the name distribution. It clearly shows how
response time tends to decline as people’s last names get closer to the end of the
alphabet. The scatterplot in Figure 12.8 "Statistical Relationship Between Several
College Students’ Scores on the Rosenberg Self-Esteem Scale Given on Two
Occasions a Week Apart", which is reproduced from Chapter 5 "Psychological
Measurement", shows the relationship between 25 research methods students’
scores on the Rosenberg Self-Esteem Scale given on two occasions a week apart.
Here the points represent individuals, and we can see that the higher students
scored on the first occasion, the higher they tended to score on the second
occasion. In general, line graphs are used when the variable on the x-axis has (or is
organized into) a small number of distinct values, such as the four quartiles of the
name distribution. Scatterplots are used when the variable on the x-axis has a large
number of values, such as the different possible self-esteem scores.
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20. A statistical relationship in
which as the X variable
increases, the Y variable does
not increase or decrease at a
constant rate. Such
relationships are best
described by a curved line.
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Figure 12.8
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The data presented in Figure 12.8 "Statistical Relationship Between Several College
Students’ Scores on the Rosenberg Self-Esteem Scale Given on Two Occasions a
Week Apart" provide a good example of a positive relationship, in which higher
scores on one variable tend to be associated with higher scores on the other (so that
the points go from the lower left to the upper right of the graph). The data
presented in Figure 12.7 "Line Graph Showing the Relationship Between the
Alphabetical Position of People’s Last Names and How Quickly Those People
Respond to Offers of Consumer Goods" provide a good example of a negative
relationship, in which higher scores on one variable tend to be associated with
lower scores on the other (so that the points go from the upper left to the lower
right).

Both of these examples are also linear relationships, in which the points are
reasonably well fit by a single straight line. Nonlinear relationships®® are those in
which the points are better fit by a curved line. Figure 12.9 "A Hypothetical
Nonlinear Relationship Between How Much Sleep People Get per Night and How
Depressed They Are", for example, shows a hypothetical relationship between the
amount of sleep people get per night and their level of depression. In this example,
the line that best fits the points is a curve—a kind of upside down “U”—because
people who get about eight hours of sleep tend to be the least depressed, while
those who get too little sleep and those who get too much sleep tend to be more
depressed. Nonlinear relationships are not uncommon in psychology, but a detailed
discussion of them is beyond the scope of this book.
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Figure 12.9 A Hypothetical Nonlinear Relationship Between How Much Sleep People Get per Night and How
Depressed They Are
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As we saw earlier in the book, the strength of a correlation between quantitative
variables is typically measured using a statistic called Pearson’s r. As Figure 12.10
"Pearson’s " shows, its possible values range from -1.00, through zero, to +1.00. A
value of 0 means there is no relationship between the two variables. In addition to
his guidelines for interpreting Cohen’s d, Cohen offered guidelines for interpreting
Pearson’s r in psychological research (see Table 12.4 "Guidelines for Referring to
Cohen’s "). Values near +.10 are considered small, values near * .30 are considered
medium, and values near .50 are considered large. Notice that the sign of Pearson’s
r is unrelated to its strength. Pearson’s r values of +.30 and -.30, for example, are
equally strong; it is just that one represents a moderate positive relationship and
the other a moderate negative relationship. Like Cohen’s d, Pearson’s r is also
referred to as a measure of “effect size” even though the relationship may not be a
causal one.

Figure 12.10 Pearson’s r Ranges From -1.00 (Representing the Strongest Possible Negative Relationship),
Through 0 (Representing No Relationship), to +1.00 (Representing the Strongest Possible Positive Relationship)

-1.00 -50 0 +.50 +1.00
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The computations for Pearson’s r are more complicated than those for Cohen’s d.
Although you may never have to do them by hand, it is still instructive to see how.
Computationally, Pearson’s r is the “mean cross-product of z scores.” To compute it,
one starts by transforming all the scores to z scores. For the X variable, subtract the
mean of X from each score and divide each difference by the standard deviation of
X. For the Y variable, subtract the mean of Y from each score and divide each
difference by the standard deviation of Y. Then, for each individual, multiply the
two z scores together to form a cross-product. Finally, take the mean of the cross-
products. The formula looks like this:

2 (2x2y)

N

r =

Table 12.5 "Sample Computations for Pearson’s " illustrates these computations for
a small set of data. The first column lists the scores for the X variable, which has a
mean of 4.00 and a standard deviation of 1.90. The second column is the z score for
each of these raw scores. The third and fourth columns list the raw scores for the Y
variable, which has a mean of 40 and a standard deviation of 11.78, and the
corresponding z scores. The fifth column lists the cross-products. For example, the
first one is 0.00 multiplied by -0.85, which is equal to 0.00. The second is 1.58
multiplied by 1.19, which is equal to 1.88. The mean of these cross-products, shown
at the bottom of that column, is Pearson’s r, which in this case is +.53. There are
other formulas for computing Pearson’s r by hand that may be quicker. This
approach, however, is much clearer in terms of communicating conceptually what
Pearson’s r is.

Table 12.5 Sample Computations for Pearson’s r

X Zx Y Zy ZxZy

4] 0.00 30 | -0.85 0.00

7| 1.58 54| 1.19 1.88

21-1.05 23 | -1.44 1.52

5| 0.53 43| 0.26 0.13

21-1.05 50| 0.85 -0.89
My = 4.00 My = 40.00 r=0.53
SDx = 1.90 SDy=11.78
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21. When the data used to assess a
statistical relationship include
a limited range of scores on
either the X or Y variable,
relative to the range of scores
in the population. This makes
the statistical relationships
appear weaker than it actually
is.

There are two common situations in which the value of Pearson’s r can be
misleading. One is when the relationship under study is nonlinear. Even though
Figure 12.9 "A Hypothetical Nonlinear Relationship Between How Much Sleep
People Get per Night and How Depressed They Are" shows a fairly strong
relationship between depression and sleep, Pearson’s r would be close to zero
because the points in the scatterplot are not well fit by a single straight line. This
means that it is important to make a scatterplot and confirm that a relationship is
approximately linear before using Pearson’s r. The other is when one or both of the
variables have a limited range in the sample relative to the population. This is
referred to as restriction of range”'. Assume, for example, that there is a strong
negative correlation between people’s age and their enjoyment of hip hop music as
shown by the scatterplot in Figure 12.11 "Hypothetical Data Showing How a Strong
Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted
Range". Pearson’s r here is -.77. However, if we were to collect data only from 18- to
24-year-olds—represented by the shaded area of Figure 12.11 "Hypothetical Data
Showing How a Strong Overall Correlation Can Appear to Be Weak When One
Variable Has a Restricted Range"—then the relationship would seem to be quite
weak. In fact, Pearson’s r for this restricted range of ages is 0. It is a good idea,
therefore, to design studies to avoid restriction of range. For example, if age is one
of your primary variables, then you can plan to collect data from people of a wide
range of ages. Because restriction of range is not always anticipated or easily
avoidable, however, it is good practice to examine your data for possible restriction
of range and to interpret Pearson’s r in light of it. (There are also statistical
methods to correct Pearson’s r for restriction of range, but they are beyond the
scope of this book).

Figure 12.11 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One
Variable Has a Restricted Range
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The overall correlation here is -.77, but the correlation for the 18- to 24-year-olds (in the blue box) is 0.
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KEY TAKEAWAYS

« Differences between groups or conditions are typically described in
terms of the means and standard deviations of the groups or conditions
or in terms of Cohen’s d and are presented in bar graphs.

« Cohen’s d is a measure of relationship strength (or effect size) for
differences between two group or condition means. It is the difference
of the means divided by the standard deviation. In general, values of
+0.20, +0.50, and £0.80 can be considered small, medium, and large,
respectively.

¢ Correlations between quantitative variables are typically described in
terms of Pearson’s r and presented in line graphs or scatterplots.

« Pearson’s r is a measure of relationship strength (or effect size) for
relationships between quantitative variables. It is the mean cross-
product of the two sets of z scores. In general, values of .10, .30, and
+.50 can be considered small, medium, and large, respectively.
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EXERCISES

1. Practice: The following data represent scores on the Rosenberg
Self-Esteem Scale for a sample of 10 Japanese college students
and 10 American college students. (Although hypothetical, these
data are consistent with empirical findings [Schmitt & Allik,
2005].Schmitt, D. P., & Allik, J. (2005). Simultaneous
administration of the Rosenberg Self-Esteem Scale in 53 nations:
Exploring the universal and culture-specific features of global
self-esteem. Journal of Personality and Social Psychology, 89,
623-642.) Compute the means and standard deviations of the two
groups, make a bar graph, compute Cohen’s d, and describe the
strength of the relationship in words.

Japan | United States
25 27
20 30
24 34
28 37
30 26
32 24
21 28
24 35
20 33
26 36

2. Practice: The hypothetical data that follow are extroversion
scores and the number of Facebook friends for 15 college
students. Make a scatterplot for these data, compute Pearson’s r,
and describe the relationship in words.

Extroversion | Facebook Friends

8 75

10 315
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Extroversion | Facebook Friends
4 28
6 214

12 176
14 95
10 120
11 150
4 32
13 250
5 99
7 136
8 185
11 88
10 144
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12.3 Expressing Your Results

LEARNING OBJECTIVES

1. Write out simple descriptive statistics in American Psychological
Association (APA) style.

2. Interpret and create simple APA-style graphs—including bar graphs, line
graphs, and scatterplots.

3. Interpret and create simple APA-style tables—including tables of group
or condition means and correlation matrixes.

Once you have conducted your descriptive statistical analyses, you will need to
present them to others. In this section, we focus on presenting descriptive
statistical results in writing, in graphs, and in tables—following American
Psychological Association (APA) guidelines for written research reports. These
principles can be adapted easily to other presentation formats such as posters and
slide show presentations.

Presenting Descriptive Statistics in Writing

When you have a small number of results to report, it is often most efficient to
write them out. There are a few important APA style guidelines here. First,
statistical results are always presented in the form of numerals rather than words
and are usually rounded to two decimal places (e.g., “2.00” rather than “two” or
“2”). They can be presented either in the narrative description of the results or
parenthetically—much like reference citations. Here are some examples:

The mean age of the participants was 22.43 years with a standard deviation of 2.34.

Among the low self-esteem participants, those in a negative mood expressed
stronger intentions to have unprotected sex (M = 4.05, SD = 2.32) than those in a
positive mood (M = 2.15, SD = 2.27).

The treatment group had a mean of 23.40 (SD = 9.33), while the control group had a
mean of 20.87 (SD = 8.45).

The test-retest correlation was .96.
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There was a moderate negative correlation between the alphabetical position of
respondents’ last names and their response time (r = -.27).

Notice that when presented in the narrative, the terms mean and standard deviation
are written out, but when presented parenthetically, the symbols M and SD are used
instead. Notice also that it is especially important to use parallel construction to
express similar or comparable results in similar ways. The third example is much
better than the following nonparallel alternative:

The treatment group had a mean of 23.40 (SD = 9.33), while 20.87 was the mean of
the control group, which had a standard deviation of 8.45.

Presenting Descriptive Statistics in Graphs

When you have a large number of results to report, you can often do it more clearly
and efficiently with a graph. When you prepare graphs for an APA-style research
report, there are some general guidelines that you should keep in mind. First, the
graph should always add important information rather than repeat information
that already appears in the text or in a table. (If a graph presents information more
clearly or efficiently, then you should keep the graph and eliminate the text or
table.) Second, graphs should be as simple as possible. For example, the Publication
Manual discourages the use of color unless it is absolutely necessary (although color
can still be an effective element in posters, slide show presentations, or textbooks.)
Third, graphs should be interpretable on their own. A reader should be able to
understand the basic result based only on the graph and its caption and should not
have to refer to the text for an explanation.

There are also several more technical guidelines for graphs that include the
following:

¢ Layout

o The graph should be slightly wider than it is tall.

o The independent variable should be plotted on the x-axis and the
dependent variable on the y-axis.

o Values should increase from left to right on the x-axis and from
bottom to top on the y-axis.

+ Axis Labels and Legends

o Axis labels should be clear and concise and include the units of
measurement if they do not appear in the caption.

328



Chapter 12 Descriptive Statistics

22.

23.

24.

A graph used to show
differences between the mean
scores of two or more groups
or conditions.

In bar graphs and line graphs,
vertical lines that show the
amount of variability around
the mean in each group or
condition. They typically
extend upward and downward
one standard error from the
top of each bar or point.

The standard deviation divided
by the square root of the
sample size. Often used for
error bars in graphs.

12.3 Expressing Your Results

o Axis labels should be parallel to the axis.

o Legends should appear within the boundaries of the graph.

o Text should be in the same simple font throughout and differ by no
more than four points.

+ Captions

o Captions should briefly describe the figure, explain any
abbreviations, and include the units of measurement if they do not
appear in the axis labels.

o Captions in an APA manuscript should be typed on a separate page
that appears at the end of the manuscript. See Chapter 11
"Presenting Your Research" for more information.

Bar Graphs

As we have seen throughout this book, bar graphs®® are generally used to present
and compare the mean scores for two or more groups or conditions. The bar graph
in Figure 12.12 "Sample APA-Style Bar Graph, With Error Bars Representing the
Standard Errors, Based on Research by Ollendick and Colleagues" is an APA-style
version of Figure 12.5 "Bar Graph Showing Mean Clinician Phobia Ratings for
Children in Two Treatment Conditions". Notice that it conforms to all the
guidelines listed. A new element in Figure 12.12 "Sample APA-Style Bar Graph, With
Error Bars Representing the Standard Errors, Based on Research by Ollendick and
Colleagues" is the smaller vertical bars that extend both upward and downward
from the top of each main bar. These are error bars*, and they represent the
variability in each group or condition. Although they sometimes extend one
standard deviation in each direction, they are more likely to extend one standard
error in each direction (as in Figure 12.12 "Sample APA-Style Bar Graph, With Error
Bars Representing the Standard Errors, Based on Research by Ollendick and
Colleagues"). The standard error® is the standard deviation of the group divided
by the square root of the sample size of the group. The standard error is used
because, in general, a difference between group means that is greater than two
standard errors is statistically significant. Thus one can “see” whether a difference
is statistically significant based on a bar graph with error bars.
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Figure 12.12
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Figure X. Mean clinician’s rating of phobia severity for participants receiving the education treatment and the
exposure treatment. Error bars represent standard errors.

Line Graphs

Line graphs® are used to present correlations between quantitative variables when
the independent variable has, or is organized into, a relatively small number of
distinct levels. Each point in a line graph represents the mean score on the
dependent variable for participants at one level of the independent variable. Figure
12.13 "Sample APA-Style Line Graph Based on Research by Carlson and Conard" is
an APA-style version of the results of Carlson and Conard. Notice that it includes
error bars representing the standard error and conforms to all the stated
guidelines.

25. A graph used to show the
relationship between two
quantitative variables. For each
level of the X variable, there is
a point representing the mean
of the Y variable. The points
are connected by lines.
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26. A graph used to show the
correlation between two
quantitative variables. For each
individual, there is a point
representing that individual’s
score on both the X and Y
variables.
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Figure 12.13
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Figure X. Mean response time by the alphabetical position of respondents'names in the alphabet.
Response times are expressed as z scores. Error bars represent standard errors.

In most cases, the information in a line graph could just as easily be presented in a
bar graph. In Figure 12.13 "Sample APA-Style Line Graph Based on Research by
Carlson and Conard", for example, one could replace each point with a bar that
reaches up to the same level and leave the error bars right where they are. This
emphasizes the fundamental similarity of the two types of statistical relationship.
Both are differences in the average score on one variable across levels of another.
The convention followed by most researchers, however, is to use a bar graph when
the variable plotted on the x-axis is categorical and a line graph when it is
quantitative.

Scatterplots

Scatterplots® are used to present relationships between quantitative variables
when the variable on the x-axis (typically the independent variable) has a large
number of levels. Each point in a scatterplot represents an individual rather than
the mean for a group of individuals, and there are no lines connecting the points.
The graph in Figure 12.14 "Sample APA-Style Scatterplot" is an APA-style version of
Figure 12.8 "Statistical Relationship Between Several College Students’ Scores on
the Rosenberg Self-Esteem Scale Given on Two Occasions a Week Apart", which
illustrates a few additional points. First, when the variables on the x-axis and y-axis
are conceptually similar and measured on the same scale—as here, where they are
measures of the same variable on two different occasions—this can be emphasized
by making the axes the same length. Second, when two or more individuals fall at
exactly the same point on the graph, one way this can be indicated is by offsetting
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the points slightly along the x-axis. Other ways are by displaying the number of
individuals in parentheses next to the point or by making the point larger or darker
in proportion to the number of individuals. Finally, the straight line that best fits
the points in the scatterplot, which is called the regression line, can also be
included.

Figure 12.14
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Figure X. Relationship between scores on the Rosenberg
self-esteem scale taken by 25 research methods students
on two occasions one week apart. Pearson’s r =.96.

Expressing Descriptive Statistics in Tables

Like graphs, tables can be used to present large amounts of information clearly and
efficiently. The same general principles apply to tables as apply to graphs. They
should add important information to the presentation of your results, be as simple
as possible, and be interpretable on their own. Again, we focus here on tables for an
APA-style manuscript.

The most common use of tables is to present several means and standard
deviations—usually for complex research designs with multiple independent and
dependent variables. Figure 12.15 "Sample APA-Style Table Presenting Means and
Standard Deviations", for example, shows the results of a hypothetical study similar
to the one by MacDonald and Martineau (2002)MacDonald, T. K., & Martineau, A. M.
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27. A table that shows the
correlations among several
variables.
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(2002). Self-esteem, mood, and intentions to use condoms: When does low self-
esteem lead to risky health behaviors? Journal of Experimental Social Psychology, 38,
299-306. discussed in Chapter 5 "Psychological Measurement". (The means in
Figure 12.15 "Sample APA-Style Table Presenting Means and Standard Deviations"

are the means reported by MacDonald and Martineau, but the standard errors are
not). Recall that these researchers categorized participants as having low or high
self-esteem, put them into a negative or positive mood, and measured their
intentions to have unprotected sex. Although not mentioned in Chapter 5
"Psychological Measurement", they also measured participants’ attitudes toward
unprotected sex. Notice that the table includes horizontal lines spanning the entire
table at the top and bottom, and just beneath the column headings. Furthermore,
every column has a heading—including the leftmost column—and there are
additional headings that span two or more columns that help to organize the
information and present it more efficiently. Finally, notice that APA-style tables are
numbered consecutively starting at 1 (Table 1, Table 2, and so on) and given a brief
but clear and descriptive title.

Figure 12.15

Table X

Means and Standard Deviations of Intentions to Have Unprotected Sex and Attitudes Toward
Unprotected Sex as a Function of Both Mood and Self-Esteem

Negative mood Positive mood

Self-Esteem M SD M SD
Intentions

High 2.46 1.97 2.45 2.00

Low 4.05 2.32 2.15 2.27
Attitudes

High 1.65 2,23 1.82 2.32

Low 1.95 2.01 1.23 1.75

Another common use of tables is to present correlations—usually measured by
Pearson’s r—among several variables. This is called a correlation matrix”’. Figure
12.16 "Sample APA-Style Table (Correlation Matrix) Based on Research by McCabe
and Colleagues" is a correlation matrix based on a study by David McCabe and
colleagues (McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010).McCabe, D. P.,
Roediger, H. L., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). The
relationship between working memory capacity and executive functioning.
Neuropsychology, 243, 222-243. They were interested in the relationships between
working memory and several other variables. We can see from the table that the
correlation between working memory and executive function, for example, was an
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extremely strong .96, that the correlation between working memory and
vocabulary was a medium .27, and that all the measures except vocabulary tend to
decline with age. Notice here that only half the table is filled in because the other
half would have identical values. For example, the Pearson’s r value in the upper
right corner (working memory and age) would be the same as the one in the lower
left corner (age and working memory). The correlation of a variable with itself is
always 1.00, so these values are replaced by dashes to make the table easier to read.

Figure 12.16 Sample APA-Style Table (Correlation Matrix) Based on Research by McCabe and Colleagues

Table X

Correlations Between Five Cognitive Variables and Age

Measure 1 2 3 4 5
1. Working memory =

2. Executive function 96 =

3. Processing speed .78 .78 -

4.Vocabulary .27 45 .08 —_—

5. Episodic memory 73 75 .52 .38 —_—
6.Age -.59 -.56 -.82 22 -41

As with graphs, precise statistical results that appear in a table do not need to be
repeated in the text. Instead, the writer can note major trends and alert the reader
to details (e.g., specific correlations) that are of particular interest.

KEY TAKEAWAYS

« In an APA-style article, simple results are most efficiently presented in
the text, while more complex results are most efficiently presented in

graphs or tables.

« APA style includes several rules for presenting numerical results in the
text. These include using words only for numbers less than 10 that do
not represent precise statistical results, and rounding results to two
decimal places, using words (e.g., “mean”) in the text and symbols (e.g.,

“M”) in parentheses.

* APA style includes several rules for presenting results in graphs and
tables. Graphs and tables should add information rather than repeating
information, be as simple as possible, and be interpretable on their own
with a descriptive caption (for graphs) or a descriptive title (for tables).
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EXERCISE

1. Practice: In a classic study, men and women rated the importance of
physical attractiveness in both a short-term mate and a long-term mate
(Buss & Schmitt, 1993).Buss, D. M., & Schmitt, D. P. (1993). Sexual
strategies theory: A contextual evolutionary analysis of human mating.
Psychological Review, 100, 204-232. The means and standard deviations are
as follows. Men / Short Term: M = 5.67, SD = 2.34; Men / Long Term: M =
4.43, SD = 2.11; Women / Short Term: M = 5.67, SD = 2.48; Women / Long
Term: M = 4.22, SD = 1.98. Present these results (a) in writing, (b) in a
graph, and (c) in a table.
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28. Data in the form in which they
were originally collected (e.g.,
completed questionnaires).

LEARNING OBJECTIVE

1. Describe the steps involved in preparing and analyzing a typical set of
raw data.

Even when you understand the statistics involved, analyzing data can be a
complicated process. It is likely that for each of several participants, there are data
for several different variables: demographics such as sex and age, one or more
independent variables, one or more dependent variables, and perhaps a
manipulation check. Furthermore, the “raw” (unanalyzed) data might take several
different forms—completed paper-and-pencil questionnaires, computer files filled
with numbers or text, videos, or written notes—and these may have to be
organized, coded, or combined in some way. There might even be missing,
incorrect, or just “suspicious” responses that must be dealt with. In this section, we
consider some practical advice to make this process as organized and efficient as
possible.

Prepare Your Data for Analysis

Whether your raw data are on paper or in a computer file (or both), there are a few
things you should do before you begin analyzing them. First, be sure they do not
include any information that might identify individual participants and be sure that
you have a secure location where you can store the data and a separate secure
location where you can store any consent forms. Unless the data are highly
sensitive, a locked room or password-protected computer is usually good enough. It
is also a good idea to make photocopies or backup files of your data and store them
in yet another secure location—at least until the project is complete. Professional
researchers usually keep a copy of their raw data and consent forms for several
years in case questions about the procedure, the data, or participant consent arise
after the project is completed.

Next, you should check your raw data®® to make sure that they are complete and
appear to have been accurately recorded (whether it was participants, yourself, or a
computer program that did the recording). At this point, you might find that there
are illegible or missing responses, or obvious misunderstandings (e.g., a response of
“12” on a 1-to-10 rating scale). You will have to decide whether such problems are
severe enough to make a participant’s data unusable. If information about the main
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29. A computer file that contains
data formatted for statistical
analysis.

12.4 Conducting Your Analyses

independent or dependent variable is missing, or if several responses are missing or
suspicious, you may have to exclude that participant’s data from the analyses. If you
do decide to exclude any data, do not throw them away or delete them because you
or another researcher might want to see them later. Instead, set them aside and
keep notes about why you decided to exclude them because you will need to report
this information.

Now you are ready to enter your data in a spreadsheet program or, if it is already in
a computer file, to format it for analysis. You can use a general spreadsheet
program like Microsoft Excel or a statistical analysis program like SPSS to create
your data file”. (Data files created in one program can usually be converted to
work with other programs.) The most common format is for each row to represent a
participant and for each column to represent a variable (with the variable name at
the top of each column). A sample data file is shown in Table 12.6 "Sample Data
File". The first column contains participant identification numbers. This is followed
by columns containing demographic information (sex and age), independent
variables (mood, four self-esteem items, and the total of the four self-esteem items),
and finally dependent variables (intentions and attitudes). Categorical variables can
usually be entered as category labels (e.g., “M” and “F” for male and female) or as
numbers (e.g., “0” for negative mood and “1” for positive mood). Although category
labels are often clearer, some analyses might require numbers. SPSS allows you to
enter numbers but also attach a category label to each number.

Table 12.6 Sample Data File

ID | SEX | AGE | MOOD | SE1 | SE2 | SE3 | SE4 | TOTAL | INT | ATT
1 M 20 1 2 3 2 3 10| 6 5
2 F 22 1 1 0 2 1 4|4 4
3 F 19 0 2 2 2 2 8|2 3
4 F 24 0 3 3 2 3 115 6

If you have multiple-response measures—such the self-esteem measure in Table
12.6 "Sample Data File"—you could combine the items by hand and then enter the
total score in your spreadsheet. However, it is much better to enter each response
as a separate variable in the spreadsheet—as with the self-esteem measure in Table
12.6 "Sample Data File"—and use the software to combine them (e.g., using the
“AVERAGE” function in Excel or the “Compute” function in SPSS). Not only is this
approach more accurate, but it allows you to detect and correct errors, to assess
internal consistency, and to analyze individual responses if you decide to do so
later.
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Preliminary Analyses

Before turning to your primary research questions, there are often several
preliminary analyses to conduct. For multiple-response measures, you should assess
the internal consistency of the measure. Statistical programs like SPSS will allow
you to compute Cronbach’s a or Cohen’s k. If this is beyond your comfort level, you
can still compute and evaluate a split-half correlation.

Next, you should analyze each important variable separately. (This is not necessary
for manipulated independent variables, of course, because you as the researcher
determined what the distribution would be.) Make histograms for each one, note
their shapes, and compute the common measures of central tendency and
variability. Be sure you understand what these statistics mean in terms of the
variables you are interested in. For example, a distribution of self-report happiness
ratings on a 1-to-10-point scale might be unimodal and negatively skewed with a
mean of 8.25 and a standard deviation of 1.14. But what this means is that most
participants rated themselves fairly high on the happiness scale, with a small
number rating themselves noticeably lower.

Now is the time to identify outliers, examine them more closely, and decide what to
do about them. You might discover that what at first appears to be an outlier is the
result of a response being entered incorrectly in the data file, in which case you
only need to correct the data file and move on. Alternatively, you might suspect
that an outlier represents some other kind of error, misunderstanding, or lack of
effort by a participant. For example, in a reaction time distribution in which most
participants took only a few seconds to respond, a participant who took 3 minutes
to respond would be an outlier. It seems likely that this participant did not
understand the task (or at least was not paying very close attention). Also, including
his or her reaction time would have a large impact on the mean and standard
deviation for the sample. In situations like this, it can be justifiable to exclude the
outlying response or participant from the analyses. If you do this, however, you
should keep notes on which responses or participants you have excluded and why,
and apply those same criteria consistently to every response and every participant.
When you present your results, you should indicate how many responses or
participants you excluded and the specific criteria that you used. And again, do not
literally throw away or delete the data that you choose to exclude. Just set them
aside because you or another researcher might want to see them later.

Keep in mind that outliers do not necessarily represent an error, misunderstanding,
or lack of effort. They might represent truly extreme responses or participants. For
example, in one large college student sample, the vast majority of participants
reported having had fewer than 15 sexual partners, but there were also a few
extreme scores of 60 or 70 (Brown & Sinclair, 1999).Brown, N. R., & Sinclair, R. C.
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(1999). Estimating number of lifetime sexual partners: Men and women do it
differently. The Journal of Sex Research, 36, 292-297. Although these scores might
represent errors, misunderstandings, or even intentional exaggerations, it is also
plausible that they represent honest and even accurate estimates. One strategy here
would be to use the median and other statistics that are not strongly affected by the
outliers. Another would be to analyze the data both including and excluding any
outliers. If the results are essentially the same, which they often are, then it makes
sense to leave the outliers. If the results differ depending on whether the outliers
are included or excluded them, then both analyses can be reported and the
differences between them discussed.

Answer Your Research Questions

Finally, you are ready to answer your primary research questions. If you are
interested in a difference between group or condition means, you can compute the
relevant group or condition means and standard deviations, make a bar graph to
display the results, and compute Cohen’s d. If you are interested in a correlation
between quantitative variables, you can make a line graph or scatterplot (be sure to
check for nonlinearity and restriction of range) and compute Pearson’s r.

At this point, you should also explore your data for other interesting results that
might provide the basis for future research (and material for the discussion section
of your paper). Daryl Bem (2003) suggests that you

[e]xamine [your data] from every angle. Analyze the sexes separately. Make up new
composite indexes. If a datum suggests a new hypothesis, try to find additional
evidence for it elsewhere in the data. If you see dim traces of interesting patterns,
try to reorganize the data to bring them into bolder relief. If there are participants
you don’t like, or trials, observers, or interviewers who gave you anomalous results,
drop them (temporarily). Go on a fishing expedition for
something—anything—interesting. (p. 186-187)Bem, D. J. (2003). Writing the
empirical journal article. In J. M. Darley, M. P. Zanna, & H. L. Roediger I1I (Eds.), The
compleat academic: A career guide (2nd ed., pp. 185-219). Washington, DC: American
Psychological Association.

It is important to be cautious, however, because complex sets of data are likely to
include “patterns” that occurred entirely by chance. Thus results discovered while
“fishing” should be replicated in at least one new study before being presented as
new phenomena in their own right.
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Understand Your Descriptive Statistics

In the next chapter, we will consider inferential statistics—a set of techniques for
deciding whether the results for your sample are likely to apply to the population.
Although inferential statistics are important for reasons that will be explained
shortly, beginning researchers sometimes forget that their descriptive statistics
really tell “what happened” in their study. For example, imagine that a treatment
group of 50 participants has a mean score of 34.32 (SD = 10.45), a control group of 50
participants has a mean score of 21.45 (SD = 9.22), and Cohen’s d is an extremely
strong 1.31. Although conducting and reporting inferential statistics (like a t test)
would certainly be a required part of any formal report on this study, it should be
clear from the descriptive statistics alone that the treatment worked. Or imagine
that a scatterplot shows an indistinct “cloud” of points and Pearson’s r is a trivial
-.02. Again, although conducting and reporting inferential statistics would be a
required part of any formal report on this study, it should be clear from the
descriptive statistics alone that the variables are essentially unrelated. The point is
that you should always be sure that you thoroughly understand your results at a
descriptive level first, and then move on to the inferential statistics.

KEY TAKEAWAYS

 Raw data must be prepared for analysis by examining them for possible
errors, organizing them, and entering them into a spreadsheet program.

¢ Preliminary analyses on any data set include checking the reliability of
measures, evaluating the effectiveness of any manipulations, examining
the distributions of individual variables, and identifying outliers.

« Outliers that appear to be the result of an error, a misunderstanding, or
a lack of effort can be excluded from the analyses. The criteria for
excluded responses or participants should be applied in the same way to
all the data and described when you present your results. Excluded data
should be set aside rather than destroyed or deleted in case they are
needed later.

« Descriptive statistics tell the story of what happened in a study.
Although inferential statistics are also important, it is essential to
understand the descriptive statistics first.
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EXERCISE

1. Discussion: What are at least two reasonable ways to deal with each of
the following outliers based on the discussion in this chapter? (a) A
participant estimating ordinary people’s heights estimates one woman’s
height to be “84 inches” tall. (b) In a study of memory for ordinary
objects, one participant scores 0 out of 15. (c) In response to a question
about how many “close friends” she has, one participant writes “32.”
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