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Chapter 6

The Structure of Atoms

Chapter 1 "Introduction to Chemistry" through Chapter 5 "Energy Changes in
Chemical Reactions" introduced you to a wide variety of chemical substances and
some of the most fundamental concepts in chemistry, including general
descriptions of chemical bonding, mass relationships in chemical equations, and the
energy changes associated with chemical reactions. You learned that the atoms of
each element contain a unique number of positively charged protons in the nucleus
and that a neutral atom has the same number of electrons as protons. You also
learned that protons and neutrons constitute most of the mass of the atom and that
electrons occupy most of the volume of an atom. These facts do not, however,
explain the stoichiometries and the structures of chemical compounds; a deeper
understanding of the electronic structure of atoms is required.

The noble gases. Helium, neon, argon, krypton, and xenon, all monatomic elements, are five of the six known noble
gases. When atoms of these gases are excited by the flow of electrons in the discharge tubes, they emit photons of
visible light in their characteristic spectral colors. All noble gases have the maximum number of electrons possible
in their outer shell (2 for helium, 8 for all others), so they do not form chemical compounds easily.
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In this chapter, we describe how electrons are arranged in atoms and how the
spatial arrangements of electrons are related to their energies. We also explain how
knowing the arrangement of electrons in an atom enables chemists to predict and
explain the chemistry of an element. As you study the material presented in this
chapter, you will discover how the shape of the periodic table reflects the electronic
arrangements of elements. In this and subsequent chapters, we build on this
information to explain why certain chemical changes occur and others do not.

After reading this chapter, you will know enough about the theory of the electronic
structure of atoms to explain what causes the characteristic colors of neon signs,
how laser beams are created, and why gemstones and fireworks have such brilliant
colors. In later chapters, we will develop the concepts introduced here to explain
why the only compound formed by sodium and chlorine is NaCl, an ionic
compound, whereas neon and argon do not form any stable compounds, and why
carbon and hydrogen combine to form an almost endless array of covalent
compounds, such as CH4, C2H2, C2H4, and C2H6. You will discover that knowing how

to use the periodic table is the single most important skill you can acquire to
understand the incredible chemical diversity of the elements.
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Figure 6.1 A Wave in Water

When a drop of water falls onto a
smooth water surface, it
generates a set of waves that
travel outward in a circular
direction.

6.1 Waves and Electromagnetic Radiation

LEARNING OBJECTIVE

1. To know the characteristics of electromagnetic energy.

Scientists discovered much of what we know about the structure of the atom by
observing the interaction of atoms with various forms of radiant, or transmitted,
energy, such as the energy associated with the visible light we detect with our eyes,
the infrared radiation we feel as heat, the ultraviolet light that causes sunburn, and
the x-rays that produce images of our teeth or bones. All these forms of radiant
energy should be familiar to you. We begin our discussion of the development of
our current atomic model by describing the properties of waves and the various
forms of electromagnetic radiation.

Properties of Waves

A wave1 is a periodic oscillation that transmits energy
through space. Anyone who has visited a beach or
dropped a stone into a puddle has observed waves
traveling through water (Figure 6.1 "A Wave in Water").
These waves are produced when wind, a stone, or some
other disturbance, such as a passing boat, transfers
energy to the water, causing the surface to oscillate up
and down as the energy travels outward from its point
of origin. As a wave passes a particular point on the
surface of the water, anything floating there moves up
and down.

1. A periodic oscillation that
transmits energy through
space.
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Figure 6.2 Important Properties of Waves

(a) Wavelength (λ), frequency (ν, labeled in Hz), and amplitude are indicated on this drawing of a wave. (b) The
wave with the shortest wavelength has the greatest number of wavelengths per unit time (i.e., the highest
frequency). If two waves have the same frequency and speed, the one with the greater amplitude has the higher
energy.

Waves have characteristic properties (Figure 6.2 "Important Properties of Waves").
As you may have noticed in Figure 6.1 "A Wave in Water", waves are periodic2; that
is, they repeat regularly in both space and time. The distance between two
corresponding points in a wave—between the midpoints of two peaks, for example,
or two troughs—is the wavelength (λ)3.λ is the lowercase Greek lambda, and ν is
the lowercase Greek nu. Wavelengths are described by a unit of distance, typically
meters. The frequency (ν)4 of a wave is the number of oscillations that pass a
particular point in a given period of time. The usual units are oscillations per
second (1/s = s−1), which in the SI system is called the hertz (Hz).Named after
German physicist Heinrich Hertz (1857–1894), a pioneer in the field of
electromagnetic radiation. The amplitude5, or vertical height, of a wave is defined
as half the peak-to-trough height; as the amplitude of a wave with a given
frequency increases, so does its energy. As you can see in Figure 6.2 "Important
Properties of Waves", two waves can have the same amplitude but different
wavelengths and vice versa. The distance traveled by a wave per unit time is its
speed (v)6, which is typically measured in meters per second (m/s). The speed of a
wave is equal to the product of its wavelength and frequency:

2. Phenomena, such as waves,
that repeat regularly in both
space and time.

3. The distance between two
corresponding points in a
wave—between the midpoints
of two peaks or two troughs.

4. The number of oscillations (i.e.,
of a wave) that pass a
particular point in a given
period of time.

5. The vertical height of a wave,
which is defined as half the
peak-to-trough height.

6. The distance traveled by a
wave per unit time.
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Figure 6.3 The Nature of
Electromagnetic Radiation

All forms of electromagnetic
radiation consist of

Equation 6.1

Water waves are slow compared to sound waves, which can travel through solids,
liquids, and gases. Whereas water waves may travel a few meters per second, the
speed of sound in dry air at 20°C is 343.5 m/s. Ultrasonic waves, which travel at an
even higher speed (>1500 m/s) and have a greater frequency, are used in such
diverse applications as locating underwater objects and the medical imaging of
internal organs.

Electromagnetic Radiation

Water waves transmit energy through space by the periodic oscillation of matter
(the water). In contrast, energy that is transmitted, or radiated, through space in
the form of periodic oscillations of electric and magnetic fields is known as
electromagnetic radiation7 (Figure 6.3 "The Nature of Electromagnetic
Radiation"). Some forms of electromagnetic radiation are shown in Figure 6.4 "The
Electromagnetic Spectrum". In a vacuum, all forms of electromagnetic
radiation—whether microwaves, visible light, or gamma rays—travel at the speed
of light (c)8, a fundamental physical constant with a value of 2.99792458 × 108 m/s
(which is about 3.00 ×108 m/s or 1.86 × 105 mi/s). This is about a million times faster
than the speed of sound.

Because the various kinds of electromagnetic radiation
all have the same speed (c), they differ in only
wavelength and frequency. As shown in Figure 6.4 "The
Electromagnetic Spectrum" and Table 6.1 "Common
Wavelength Units for Electromagnetic Radiation", the
wavelengths of familiar electromagnetic radiation range
from 101 m for radio waves to 10−12 m for gamma rays,
which are emitted by nuclear reactions. By replacing v
with c in Equation 6.1, we can show that the frequency
of electromagnetic radiation is inversely proportional to
its wavelength:

(wavelength)(frequency) = speed
λν = v

( meters
wave ) (

wave
second ) =

meters
second

7. Energy that is transmitted, or
radiated, through space in the
form of periodic oscillations of
electric and magnetic fields.

8. The speed with which all forms
of electromagnetic radiation
travel in a vacuum.
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perpendicular oscillating electric
and magnetic fields.

Equation 6.2

For example, the frequency of radio waves is about 108 Hz, whereas the frequency
of gamma rays is about 1020 Hz. Visible light, which is electromagnetic radiation
that can be detected by the human eye, has wavelengths between about 7 × 10−7 m
(700 nm, or 4.3 × 1014 Hz) and 4 × 10−7 m (400 nm, or 7.5 × 1014 Hz). Within this
range, the eye perceives radiation of different wavelengths (or frequencies) as light
of different colors, ranging from red to violet in order of decreasing wavelength.
The components of white light—a mixture of all the frequencies of visible light—can
be separated by a prism, as shown in part (b) in Figure 6.4 "The Electromagnetic
Spectrum". A similar phenomenon creates a rainbow, where water droplets
suspended in the air act as tiny prisms.

Figure 6.4 The Electromagnetic Spectrum

(a) This diagram shows the wavelength and frequency ranges of electromagnetic radiation. The visible portion of
the electromagnetic spectrum is the narrow region with wavelengths between about 400 and 700 nm. (b) When
white light is passed through a prism, it is split into light of different wavelengths, whose colors correspond to the
visible spectrum.

Table 6.1 Common Wavelength Units for Electromagnetic Radiation

Unit Symbol Wavelength (m) Type of Radiation

picometer pm 10−12 gamma ray

angstrom Å 10−10 x-ray

nanometer nm 10−9 x-ray

c = λν

ν =
c

λ
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Unit Symbol Wavelength (m) Type of Radiation

micrometer μm 10−6 infrared

millimeter mm 10−3 infrared

centimeter cm 10−2 microwave

meter m 100 radio

As you will soon see, the energy of electromagnetic radiation is directly
proportional to its frequency and inversely proportional to its wavelength:

Equation 6.3

Equation 6.4

Whereas visible light is essentially harmless to our skin, ultraviolet light, with
wavelengths of ≤ 400 nm, has enough energy to cause severe damage to our skin in
the form of sunburn. Because the ozone layer described in Chapter 3 "Chemical
Reactions" absorbs sunlight with wavelengths less than 350 nm, it protects us from
the damaging effects of highly energetic ultraviolet radiation.

Note the Pattern

The energy of electromagnetic radiation increases with increasing frequency
and decreasing wavelength.

E ∝ ν

E ∝
1
λ
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EXAMPLE  1

Your favorite FM radio station, WXYZ, broadcasts at a frequency of 101.1
MHz. What is the wavelength of this radiation?

Given: frequency

Asked for: wavelength

Strategy:

Substitute the value for the speed of light in meters per second into
Equation 6.2 to calculate the wavelength in meters.

Solution:

From Equation 6.2, we know that the product of the wavelength and the
frequency is the speed of the wave, which for electromagnetic radiation is
2.998 × 108 m/s:

λν = c = 2.998 × 108 m/s

Thus the wavelength λ is given by

Exercise

As the police officer was writing up your speeding ticket, she mentioned
that she was using a state-of-the-art radar gun operating at 35.5 GHz. What
is the wavelength of the radiation emitted by the radar gun?

Answer: 8.45 mm

In Section 6.2 "The Quantization of Energy" and Section 6.3 "Atomic Spectra and
Models of the Atom", we describe how scientists developed our current
understanding of the structure of atoms using the scientific method described in
Chapter 1 "Introduction to Chemistry". You will discover why scientists had to

λ =
c

ν
= (

2.998 × 108 m/ s

101.1 MHz ) (
1 MHz

106 s −1 ) = 2.965 m
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rethink their classical understanding of the nature of electromagnetic energy,
which clearly distinguished between the particulate behavior of matter and the
wavelike nature of energy.

KEY EQUATIONS

relationship between wavelength, frequency, and speed of a wave

Equation 6.1: λν = v

relationship between wavelength, frequency, and speed of
electromagnetic radiation

Equation 6.2: c = λν

Summary

A basic knowledge of the electronic structure of atoms requires an
understanding of the properties of waves and electromagnetic radiation. A
wave is a periodic oscillation by which energy is transmitted through space. All
waves are periodic, repeating regularly in both space and time. Waves are
characterized by several interrelated properties: wavelength (λ), the distance
between successive waves; frequency (ν), the number of waves that pass a
fixed point per unit time; speed (v), the rate at which the wave propagates
through space; and amplitude, the magnitude of the oscillation about the mean
position. The speed of a wave is equal to the product of its wavelength and
frequency. Electromagnetic radiation consists of two perpendicular waves,
one electric and one magnetic, propagating at the speed of light (c).
Electromagnetic radiation is radiant energy that includes radio waves,
microwaves, visible light, x-rays, and gamma rays, which differ only in their
frequencies and wavelengths.
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KEY TAKEAWAY

• Understanding the electronic structure of atoms requires an
understanding of the properties of waves and electromagnetic radiation.

CONCEPTUAL PROBLEMS

1. What are the characteristics of a wave? What is the relationship between
electromagnetic radiation and wave energy?

2. At constant wavelength, what effect does increasing the frequency of a wave
have on its speed? its amplitude?

3. List the following forms of electromagnetic radiation in order of increasing
wavelength: x-rays, radio waves, infrared waves, microwaves, ultraviolet
waves, visible waves, and gamma rays. List them in order of increasing
frequency. Which has the highest energy?

4. A large industry is centered on developing skin-care products, such as suntan
lotions and cosmetics, that cannot be penetrated by ultraviolet radiation. How
does the wavelength of visible light compare with the wavelength of
ultraviolet light? How does the energy of visible light compare with the energy
of ultraviolet light? Why is this industry focused on blocking ultraviolet light
rather than visible light?
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NUMERICAL  PROBLEMS

1. The human eye is sensitive to what fraction of the electromagnetic spectrum,
assuming a typical spectral range of 104 to 1020 Hz? If we came from the planet
Krypton and had x-ray vision (i.e., if our eyes were sensitive to x-rays in
addition to visible light), how would this fraction be changed?

2. What is the frequency in megahertz corresponding to each wavelength?

a. 755 m
b. 6.73 nm
c. 1.77 × 103 km
d. 9.88 Å
e. 3.7 × 10−10 m

3. What is the frequency in megahertz corresponding to each wavelength?

a. 5.8 × 10−7 m
b. 2.3 Å
c. 8.6 × 107 m
d. 6.2 mm
e. 3.7 nm

4. Line spectra are also observed for molecular species. Given the following
characteristic wavelengths for each species, identify the spectral region
(ultraviolet, visible, etc.) in which the following line spectra will occur. Given
1.00 mol of each compound and the wavelength of absorbed or emitted light,
how much energy does this correspond to?

a. NH3, 1.0 × 10−2 m

b. CH3CH2OH, 9.0 μm
c. Mo atom, 7.1 Å

5. What is the speed of a wave in meters per second that has a wavelength of 1250
m and a frequency of 2.36 × 105 s−1?

6. A wave travels at 3.70 m/s with a frequency of 4.599 × 107 Hz and an amplitude
of 1.0 m. What is its wavelength in nanometers?

7. An AM radio station broadcasts with a wavelength of 248.0 m. What is the
broadcast frequency of the station in kilohertz? An AM station has a broadcast
range of 92.6 MHz. What is the corresponding wavelength range in meters for
this reception?

8. An FM radio station broadcasts with a wavelength of 3.21 m. What is the
broadcast frequency of the station in megahertz? An FM radio typically has a
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broadcast range of 82–112 MHz. What is the corresponding wavelength range
in meters for this reception?

9. A microwave oven operates at a frequency of approximately 2450 MHz. What is
the corresponding wavelength? Water, with its polar molecules, absorbs
electromagnetic radiation primarily in the infrared portion of the spectrum.
Given this fact, why are microwave ovens used for cooking food?
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6.2 The Quantization of Energy

LEARNING OBJECTIVE

1. To understand how energy is quantized.

By the late 19th century, many physicists thought their discipline was well on the
way to explaining most natural phenomena. They could calculate the motions of
material objects using Newton’s laws of classical mechanics, and they could
describe the properties of radiant energy using mathematical relationships known
as Maxwell’s equations, developed in 1873 by James Clerk Maxwell, a Scottish
physicist. The universe appeared to be a simple and orderly place, containing
matter, which consisted of particles that had mass and whose location and motion
could be accurately described, and electromagnetic radiation, which was viewed as
having no mass and whose exact position in space could not be fixed. Thus matter
and energy were considered distinct and unrelated phenomena. Soon, however,
scientists began to look more closely at a few inconvenient phenomena that could
not be explained by the theories available at the time.

Blackbody Radiation

One phenomenon that seemed to contradict the theories of classical physics was
blackbody radiation9, the energy emitted by an object when it is heated. The
wavelength of energy emitted by an object depends on only its temperature, not its
surface or composition. Hence an electric stove burner or the filament of a space
heater glows dull red or orange when heated, whereas the much hotter tungsten
wire in an incandescent light bulb gives off a yellowish light (Figure 6.5 "Blackbody
Radiation").

9. Electromagnetic radiation
whose wavelength and color
depends on the temperature of
the object.
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Figure 6.5 Blackbody
Radiation

When heated, all objects emit
electromagnetic radiation whose
wavelength (and color) depends
on the temperature of the object.
A relatively low-temperature
object, such as an electric stove
element, on a low setting appears
red, whereas a higher-
temperature object, such as the
filament of an incandescent light
bulb, appears yellow or white.

The intensity of radiation is a measure of the energy
emitted per unit area. A plot of the intensity of
blackbody radiation as a function of wavelength for an
object at various temperatures is shown in Figure 6.6
"Relationship between the Temperature of an Object
and the Spectrum of Blackbody Radiation It Emits". One
of the major assumptions of classical physics was that
energy increased or decreased in a smooth, continuous
manner. For example, classical physics predicted that as
wavelength decreased, the intensity of the radiation an
object emits should increase in a smooth curve without
limit at all temperatures, as shown by the broken line
for 6000 K in Figure 6.6 "Relationship between the
Temperature of an Object and the Spectrum of
Blackbody Radiation It Emits". Thus classical physics
could not explain the sharp decrease in the intensity of
radiation emitted at shorter wavelengths (primarily in
the ultraviolet region of the spectrum), which we now
refer to as the “ultraviolet catastrophe.” In 1900,
however, the German physicist Max Planck (1858–1947)
explained the ultraviolet catastrophe by proposing that
the energy of electromagnetic waves is quantized rather
than continuous. This means that for each temperature,
there is a maximum intensity of radiation that is emitted in a blackbody object,
corresponding to the peaks in Figure 6.6 "Relationship between the Temperature of
an Object and the Spectrum of Blackbody Radiation It Emits", so the intensity does
not follow a smooth curve as the temperature increases, as predicted by classical
physics. Thus energy could be gained or lost only in integral multiples of some
smallest unit of energy, a quantum10.

10. The smallest possible unit of
energy. Energy can be gained
or lost only in integral
multiples of a quantum.
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Figure 6.6 Relationship between the Temperature of an Object and the Spectrum of Blackbody Radiation It
Emits

At relatively low temperatures, most radiation is emitted at wavelengths longer than 700 nm, which is in the
infrared portion of the spectrum. The dull red glow of the electric stove element in Figure 6.5 "Blackbody Radiation"
is due to the small amount of radiation emitted at wavelengths less than 700 nm, which the eye can detect. As the
temperature of the object increases, the maximum intensity shifts to shorter wavelengths, successively resulting in
orange, yellow, and finally white light. At high temperatures, all wavelengths of visible light are emitted with
approximately equal intensities. The white light spectrum shown for an object at 6000 K closely approximates the
spectrum of light emitted by the sun (Figure 6.14 "The Visible Spectrum of Sunlight"). Note the sharp decrease in
the intensity of radiation emitted at wavelengths below 400 nm, which constituted the ultraviolet catastrophe. The
classical prediction fails to fit the experimental curves entirely and does not have a maximum intensity.

Max Planck (1858–1947)

In addition to being a physicist, Planck was a gifted pianist, who at one time
considered music as a career. During the 1930s, Planck felt it was his duty to
remain in Germany, despite his open opposition to the policies of the Nazi
government. One of his sons was executed in 1944 for his part in an
unsuccessful attempt to assassinate Hitler, and bombing during the last weeks
of World War II destroyed Planck’s home.
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Although quantization may seem to be an unfamiliar concept, we encounter it
frequently. For example, US money is integral multiples of pennies. Similarly,
musical instruments like a piano or a trumpet can produce only certain musical
notes, such as C or F sharp. Because these instruments cannot produce a continuous
range of frequencies, their frequencies are quantized. Even electrical charge is
quantized: an ion may have a charge of −1 or −2 but not −1.33.

Planck postulated that the energy of a particular quantum of radiant energy could
be described explicitly by the equation

Equation 6.5

E = hν

where the proportionality constant h is called Planck’s constant, one of the most
accurately known fundamental constants in science. For our purposes, its value to
four significant figures is generally sufficient:

h = 6.626 × 10−34 J·s (joule-seconds)

As the frequency of electromagnetic radiation increases, the magnitude of the
associated quantum of radiant energy increases. By assuming that energy can be
emitted by an object only in integral multiples of hν, Planck devised an equation
that fit the experimental data shown in Figure 6.6 "Relationship between the
Temperature of an Object and the Spectrum of Blackbody Radiation It Emits". We
can understand Planck’s explanation of the ultraviolet catastrophe qualitatively as
follows: At low temperatures, radiation with only relatively low frequencies is
emitted, corresponding to low-energy quanta. As the temperature of an object
increases, there is an increased probability of emitting radiation with higher
frequencies, corresponding to higher-energy quanta. At any temperature, however,
it is simply more probable for an object to lose energy by emitting n lower-energy
quanta than a single very high-energy quantum that corresponds to ultraviolet
radiation. The result is a maximum in the plot of intensity of emitted radiation
versus wavelength, as shown in Figure 6.6 "Relationship between the Temperature
of an Object and the Spectrum of Blackbody Radiation It Emits", and a shift in the
position of the maximum to lower wavelength (higher frequency) with increasing
temperature.

At the time he proposed his radical hypothesis, Planck could not explain why
energies should be quantized. Initially, his hypothesis explained only one set of
experimental data—blackbody radiation. If quantization were observed for a large
number of different phenomena, then quantization would become a law (as defined
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in Chapter 1 "Introduction to Chemistry"). In time, a theory might be developed to
explain that law. As things turned out, Planck’s hypothesis was the seed from which
modern physics grew.

The Photoelectric Effect

Only five years after he proposed it, Planck’s quantization hypothesis was used to
explain a second phenomenon that conflicted with the accepted laws of classical
physics. When certain metals are exposed to light, electrons are ejected from their
surface (Figure 6.7 "The Photoelectric Effect"). Classical physics predicted that the
number of electrons emitted and their kinetic energy should depend on only the
intensity of the light, not its frequency. In fact, however, each metal was found to
have a characteristic threshold frequency of light; below that frequency, no
electrons are emitted regardless of the light’s intensity. Above the threshold
frequency, the number of electrons emitted was found to be proportional to the
intensity of the light, and their kinetic energy was proportional to the frequency.
This phenomenon was called the photoelectric effect11.

Figure 6.7 The Photoelectric Effect

(a) Irradiating a metal surface with photons of sufficiently high energy causes electrons to be ejected from the
metal. (b) A photocell that uses the photoelectric effect, similar to those found in automatic door openers. When
light strikes the metal cathode, electrons are emitted and attracted to the anode, resulting in a flow of electrical
current. If the incoming light is interrupted by, for example, a passing person, the current drops to zero. (c) In
contrast to predictions using classical physics, no electrons are emitted when photons of light with energy less than
Eo, such as red light, strike the cathode. The energy of violet light is above the threshold frequency, so the number of

emitted photons is proportional to the light’s intensity.

Albert Einstein (1879–1955; Nobel Prize in Physics, 1921) quickly realized that
Planck’s hypothesis about the quantization of radiant energy could also explain the
photoelectric effect. The key feature of Einstein’s hypothesis was the assumption
that radiant energy arrives at the metal surface in particles that we now call
photons12, each possessing a particular energy E given by Equation 6.5. Einstein
postulated that each metal has a particular electrostatic attraction for its electrons

11. A phenomenon in which
electrons are ejected from the
surface of a metal that has
been exposed to light.

12. A quantum of radiant energy,
each of which possesses a
particular energy E given by
E = hν.
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that must be overcome before an electron can be emitted from its surface (Eo = hνo).

If photons of light with energy less than Eo strike a metal surface, no single photon

has enough energy to eject an electron, so no electrons are emitted regardless of
the intensity of the light. If a photon with energy greater than Eo strikes the metal,

then part of its energy is used to overcome the forces that hold the electron to the
metal surface, and the excess energy appears as the kinetic energy of the ejected
electron:

Equation 6.6

kinetic energy of ejected electron = E − Eo = hν − hνo = h(ν − νo)

When a metal is struck by light with energy above the threshold energy Eo, the

number of emitted electrons is proportional to the intensity of the light beam, which
corresponds to the number of photons per square centimeter, but the kinetic energy
of the emitted electrons is proportional to the frequency of the light. Thus Einstein
showed that the energy of the emitted electrons depended on the frequency of the
light, contrary to the prediction of classical physics.

Albert Einstein (1879–1955)

In 1900, Einstein was working in the Swiss patent office in Bern. He was born in
Germany and throughout his childhood his parents and teachers had worried
that he might be developmentally disabled. The patent office job was a low-
level civil service position that was not very demanding, but it did allow
Einstein to spend a great deal of time reading and thinking about physics. In
1905, he published his paper on the photoelectric effect, for which he received
the Nobel Prize in 1921.

Planck’s and Einstein’s postulate that energy is quantized is in many ways similar to
Dalton’s description of atoms. Both theories are based on the existence of simple
building blocks, atoms in one case and quanta of energy in the other. The work of
Planck and Einstein thus suggested a connection between the quantized nature of
energy and the properties of individual atoms. In fact, Einstein’s Nobel Prize was
awarded for his work on the photoelectric effect (not for his more famous equation
E = mc2), demonstrating its fundamental importance.
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Recently, scientists have theorized that even our sense of smell has its basis in
quantum physics. Preliminary research indicates that odorant molecules absorb a
quantum of energy that causes their bonds to vibrate at a specific frequency.
Because different assemblages of molecules have different characteristic
frequencies, these vibrations seem to act as a molecular signature that can be
detected as an odor. Studies with flies show that they can distinguish between
similar molecules with different vibrational frequencies. This vibrational theory of
smell could serve as a discriminatory process in nature in other ways and is an
active area of research.
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EXAMPLE  2

Figure 6.8
A Beam of Red Light
Emitted by a Ruby
Laser

Ruby lasers, which
emit red light at a
wavelength of 694.3
nm, are used to read
bar codes. When used
for commercial
applications, such
lasers are generally
designed to emit
radiation over a
narrow range of
wavelengths to reduce
their cost.

A ruby laser, a device that produces light in a narrow range of wavelengths
(Section 6.3 "Atomic Spectra and Models of the Atom"), emits red light at a
wavelength of 694.3 nm (Figure 6.8 "A Beam of Red Light Emitted by a Ruby
Laser"). What is the energy in joules of a

a. single photon?
b. mole of photons?

Given: wavelength

Asked for: energy of single photon and mole of photons

Strategy:

A Use Equation 6.2 and Equation 6.5 to calculate the energy in joules.
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B Multiply the energy of a single photon by Avogadro’s number to obtain the
energy in a mole of photons.

Solution:

The energy of a single photon is given by E = hν = hc/λ.

B To calculate the energy in a mole of photons, we multiply the energy of a
single photon by the number of photons in a mole (Avogadro’s number). If
we write the energy of a photon as 2.861 × 10−19 J/photon, we obtain the
energy of a mole of photons with wavelength 694.3 nm:

This energy is of the same magnitude as some of the enthalpies of reaction
in Chapter 5 "Energy Changes in Chemical Reactions", and, as you will see in
Chapter 8 "Ionic versus Covalent Bonding", it is comparable to the strength
of many chemical bonds. As a result, light can be used to initiate chemical
reactions. In fact, an entire area of chemistry called photochemistry is
devoted to studying such processes. In the phenomenon of photosynthesis,
green plants use the energy of visible light to convert carbon dioxide and
water into sugars such as glucose.

Exercise

An x-ray generator, such as those used in hospitals, emits radiation with a
wavelength of 1.544 Å.

a. What is the energy in joules of a single photon?
b. What is the energy in joules of a mole of photons?
c. How many times more energetic is a single x-ray photon of this

wavelength than a photon emitted by a ruby laser?

E =
(6.626 × 10−34 J• s )(2.998 × 108 m • s−1 )

694.3 × 10−9 m
= 2.861 × 10−19 J

E =


 2.861 × 10−19 J

photon








6.022 × 1023 photon

mol





= 1.723 × 105 J/mol
= 172.3 kJ/mol
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Answer:

a. 1.287 × 10−15 J/photon
b. 7.748 × 108 J/mol = 7.748 × 105 kJ/mol
c. 4497 times

KEY EQUATION

quantization of energy

Equation 6.5: E = hν

Summary

The properties of blackbody radiation, the radiation emitted by hot objects,
could not be explained with classical physics. Max Planck postulated that
energy was quantized and could be emitted or absorbed only in integral
multiples of a small unit of energy, known as a quantum. The energy of a
quantum is proportional to the frequency of the radiation; the proportionality
constant h is a fundamental constant (Planck’s constant). Albert Einstein used
Planck’s concept of the quantization of energy to explain the photoelectric
effect, the ejection of electrons from certain metals when exposed to light.
Einstein postulated the existence of what today we call photons, particles of
light with a particular energy, E = hν. Both energy and matter have
fundamental building blocks: quanta and atoms, respectively.

KEY TAKEAWAY

• The fundamental building blocks of energy are quanta and of matter are
atoms.
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CONCEPTUAL PROBLEMS

1. Describe the relationship between the energy of a photon and its frequency.

2. How was the ultraviolet catastrophe explained?

3. If electromagnetic radiation with a continuous range of frequencies above the
threshold frequency of a metal is allowed to strike a metal surface, is the
kinetic energy of the ejected electrons continuous or quantized? Explain your
answer.

4. The vibrational energy of a plucked guitar string is said to be quantized. What
do we mean by this? Are the sounds emitted from the 88 keys on a piano also
quantized?

5. Which of the following exhibit quantized behavior: a human voice, the speed of
a car, a harp, the colors of light, automobile tire sizes, waves from a speedboat?

ANSWERS

1. The energy of a photon is directly proportional to the frequency of the
electromagnetic radiation.

5. Quantized: harp, tire size, speedboat waves; continuous: human voice, colors of
light, car speed.
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NUMERICAL  PROBLEMS

1. What is the energy of a photon of light with each wavelength? To which region
of the electromagnetic spectrum does each wavelength belong?

a. 4.33 × 105 m
b. 0.065 nm
c. 786 pm

2. How much energy is contained in each of the following? To which region of the
electromagnetic spectrum does each wavelength belong?

a. 250 photons with a wavelength of 3.0 m
b. 4.2 × 106 photons with a wavelength of 92 μm
c. 1.78 × 1022 photons with a wavelength of 2.1 Å

3. A mole of photons is found to have an energy of 225 kJ. What is the wavelength
of the radiation?

4. Use the data in Table 6.1 "Common Wavelength Units for Electromagnetic
Radiation" to calculate how much more energetic a single gamma-ray photon
is than a radio-wave photon. How many photons from a radio source operating
at a frequency of 8 × 105 Hz would be required to provide the same amount of
energy as a single gamma-ray photon with a frequency of 3 × 1019 Hz?

5. Use the data in Table 6.1 "Common Wavelength Units for Electromagnetic
Radiation" to calculate how much more energetic a single x-ray photon is than
a photon of ultraviolet light.

6. A radio station has a transmitter that broadcasts at a frequency of 100.7 MHz
with a power output of 50 kW. Given that 1 W = 1 J/s, how many photons are
emitted by the transmitter each second?

ANSWERS

1. a. 4.59 × 10−31 J/photon, radio
b. 3.1 × 10−15 J/photon, gamma ray
c. 2.53 × 10−16 J/photon, gamma ray

3. 532 nm
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6.3 Atomic Spectra and Models of the Atom

LEARNING OBJECTIVE

1. To know the relationship between atomic spectra and the electronic
structure of atoms.

The photoelectric effect provided indisputable evidence for the existence of the
photon and thus the particle-like behavior of electromagnetic radiation. The
concept of the photon, however, emerged from experimentation with thermal
radiation, electromagnetic radiation emitted as the result of a source’s temperature,
which produces a continuous spectrum of energies. More direct evidence was
needed to verify the quantized nature of electromagnetic radiation. In this section,
we describe how experimentation with visible light provided this evidence.

Line Spectra

Although objects at high temperature emit a continuous spectrum of
electromagnetic radiation (Figure 6.6 "Relationship between the Temperature of an
Object and the Spectrum of Blackbody Radiation It Emits"), a different kind of
spectrum is observed when pure samples of individual elements are heated. For
example, when a high-voltage electrical discharge is passed through a sample of
hydrogen gas at low pressure, the resulting individual isolated hydrogen atoms
caused by the dissociation of H2 emit a red light. Unlike blackbody radiation, the

color of the light emitted by the hydrogen atoms does not depend greatly on the
temperature of the gas in the tube. When the emitted light is passed through a
prism, only a few narrow lines, called a line spectrum13, are seen (Figure 6.9 "The
Emission of Light by Hydrogen Atoms"), rather than a continuous range of colors.
The light emitted by hydrogen atoms is red because, of its four characteristic lines,
the most intense line in its spectrum is in the red portion of the visible spectrum, at
656 nm. With sodium, however, we observe a yellow color because the most intense
lines in its spectrum are in the yellow portion of the spectrum, at about 589 nm.

13. A spectrum in which light of
only a certain wavelength is
emitted or absorbed, rather
than a continuous range of
wavelengths.
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Figure 6.9 The Emission of Light by Hydrogen Atoms

(a) A sample of excited hydrogen atoms emits a characteristic red light. (b) When the light emitted by a sample of
excited hydrogen atoms is split into its component wavelengths by a prism, four characteristic violet, blue, green,
and red emission lines can be observed, the most intense of which is at 656 nm.

Such emission spectra were observed for many other elements in the late 19th
century, which presented a major challenge because classical physics was unable to
explain them. Part of the explanation is provided by Planck’s equation (Equation
6.5): the observation of only a few values of λ (or ν) in the line spectrum meant that
only a few values of E were possible. Thus the energy levels of a hydrogen atom had to be
quantized; in other words, only states that had certain values of energy were
possible, or allowed. If a hydrogen atom could have any value of energy, then a
continuous spectrum would have been observed, similar to blackbody radiation.

In 1885, a Swiss mathematics teacher, Johann Balmer (1825–1898), showed that the
frequencies of the lines observed in the visible region of the spectrum of hydrogen
fit a simple equation that can be expressed as follows:

Chapter 6 The Structure of Atoms

6.3 Atomic Spectra and Models of the Atom 710



Equation 6.7

where n = 3, 4, 5, 6. As a result, these lines are known as the Balmer series. The
Swedish physicist Johannes Rydberg (1854–1919) subsequently restated and
expanded Balmer’s result in the Rydberg equation:

Equation 6.8

where n1 and n2 are positive integers, n2 > n1, andℛ, the Rydberg constant, has a

value of 1.09737 × 107 m−1.

Johann Balmer (1825–1898)

A mathematics teacher at a secondary school for girls in Switzerland, Balmer
was 60 years old when he wrote the paper on the spectral lines of hydrogen
that made him famous. He published only one other paper on the topic, which
appeared when he was 72 years old.

Like Balmer’s equation, Rydberg’s simple equation described the wavelengths of the
visible lines in the emission spectrum of hydrogen (with n1 = 2, n2 = 3, 4, 5,…). More

important, Rydberg’s equation also described the wavelengths of other series of
lines that would be observed in the emission spectrum of hydrogen: one in the
ultraviolet (n1 = 1, n2 = 2, 3, 4,…) and one in the infrared (n1 = 3, n2 = 4, 5, 6).

Unfortunately, scientists had not yet developed any theoretical justification for an
equation of this form.

The Bohr Model

In 1913, a Danish physicist, Niels Bohr (1885–1962; Nobel Prize in Physics, 1922),
proposed a theoretical model for the hydrogen atom that explained its emission

ν = constant ( 1
22 −

1
n2 )

1
λ

= ℛ( 1
n2

1
−

1
n2

2 )
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spectrum. Bohr’s model required only one assumption: The electron moves around the
nucleus in circular orbits that can have only certain allowed radii. As discussed in Chapter
1 "Introduction to Chemistry", Rutherford’s earlier model of the atom had also
assumed that electrons moved in circular orbits around the nucleus and that the
atom was held together by the electrostatic attraction between the positively
charged nucleus and the negatively charged electron. Although we now know that
the assumption of circular orbits was incorrect, Bohr’s insight was to propose that
the electron could occupy only certain regions of space.

Niels Bohr (1885–1962)

During the Nazi occupation of Denmark in World War II, Bohr escaped to the
United States, where he became associated with the Atomic Energy Project. In
his final years, he devoted himself to the peaceful application of atomic physics
and to resolving political problems arising from the development of atomic
weapons.

Using classical physics, Bohr showed that the energy of an electron in a particular
orbit is given by

Equation 6.9

whereℛ is the Rydberg constant, h is Planck’s constant, c is the speed of light, and
n is a positive integer corresponding to the number assigned to the orbit, with n = 1
corresponding to the orbit closest to the nucleus.The negative sign in Equation 6.9
is a convention indicating that the electron-nucleus pair has a lower energy when
they are near each other than when they are infinitely far apart, corresponding to n
= ∞. The latter condition is arbitrarily assigned an energy of zero. Thus the orbit
with n = 1 is the lowest in energy. Because a hydrogen atom with its one electron in
this orbit has the lowest possible energy, this is the ground state14, the most stable
arrangement for a hydrogen atom. As n increases, the radius of the orbit increases;
the electron is farther from the proton, which results in a less stable arrangement
with higher potential energy (Figure 6.10 "The Bohr Model of the Hydrogen Atom").
A hydrogen atom with an electron in an orbit with n > 1 is therefore in an excited
state15: its energy is higher than the energy of the ground state. When an atom in
an excited state undergoes a transition to the ground state in a process called decay,

En = −
ℛhc

n2

14. The most stable arrangement
of electrons for an element or a
compound.

15. Any arrangement of electrons
that is higher in energy than
the ground state.
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it loses energy by emitting a photon whose energy corresponds to the difference in
energy between the two states (Figure 6.11 "The Emission of Light by a Hydrogen
Atom in an Excited State").

Figure 6.10 The Bohr Model of the Hydrogen Atom

(a) The distance of the orbit from the nucleus increases with increasing n. (b) The energy of the orbit becomes
increasingly less negative with increasing n.
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Figure 6.11 The Emission of Light by a Hydrogen Atom in an Excited State

(a) Light is emitted when the electron undergoes a transition from an orbit with a higher value of n (at a higher
energy) to an orbit with a lower value of n (at lower energy). (b) The Balmer series of emission lines is due to
transitions from orbits with n ≥ 3 to the orbit with n = 2. The differences in energy between these levels corresponds
to light in the visible portion of the electromagnetic spectrum.

So the difference in energy (ΔE) between any two orbits or energy levels is given by
ΔE = En1 − En2 , where n1 is the final orbit and n2 the initial orbit. Substituting

from Bohr’s equation (Equation 6.9) for each energy value gives

Equation 6.10

If n2 > n1, the transition is from a higher energy state (larger-radius orbit) to a lower

energy state (smaller-radius orbit), as shown by the dashed arrow in part (a) in
Figure 6.11 "The Emission of Light by a Hydrogen Atom in an Excited State".
Substituting hc/λ for ΔE gives

Equation 6.11

ΔE = Efinal − Einitial = −
ℛhc

n2
1

− (−
ℛhc

n2
2 ) = −ℛhc ( 1

n2
1

−
1
n2

2 )

ΔE =
hc

λ
= −ℛhc ( 1

n2
1

−
1
n2

2 )
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Canceling hc on both sides gives

Equation 6.12

Except for the negative sign, this is the same equation that Rydberg obtained
experimentally. The negative sign in Equation 6.11 and Equation 6.12 indicates that
energy is released as the electron moves from orbit n2 to orbit n1 because orbit n2 is

at a higher energy than orbit n1. Bohr calculated the value ofℛ independently and

obtained a value of 1.0974 × 107 m−1, the same number Rydberg had obtained by
analyzing the emission spectra.

We can now understand the physical basis for the Balmer series of lines in the
emission spectrum of hydrogen (part (b) in Figure 6.9 "The Emission of Light by
Hydrogen Atoms"). As shown in part (b) in Figure 6.11 "The Emission of Light by a
Hydrogen Atom in an Excited State", the lines in this series correspond to
transitions from higher-energy orbits (n > 2) to the second orbit (n = 2). Thus the
hydrogen atoms in the sample have absorbed energy from the electrical discharge
and decayed from a higher-energy excited state (n > 2) to a lower-energy state (n =
2) by emitting a photon of electromagnetic radiation whose energy corresponds
exactly to the difference in energy between the two states (part (a) in Figure 6.11
"The Emission of Light by a Hydrogen Atom in an Excited State"). The n = 3 to n = 2
transition gives rise to the line at 656 nm (red), the n = 4 to n = 2 transition to the
line at 486 nm (green), the n = 5 to n = 2 transition to the line at 434 nm (blue), and
the n = 6 to n = 2 transition to the line at 410 nm (violet). Because a sample of
hydrogen contains a large number of atoms, the intensity of the various lines in a
line spectrum depends on the number of atoms in each excited state. At the
temperature in the gas discharge tube, more atoms are in the n = 3 than the n ≥ 4
levels. Consequently, the n = 3 to n = 2 transition is the most intense line, producing
the characteristic red color of a hydrogen discharge (part (a) in Figure 6.9 "The
Emission of Light by Hydrogen Atoms"). Other families of lines are produced by
transitions from excited states with n > 1 to the orbit with n = 1 or to orbits with n ≥
3. These transitions are shown schematically in Figure 6.12 "Electron Transitions
Responsible for the Various Series of Lines Observed in the Emission Spectrum of
Hydrogen".

1
λ

= −ℛ( 1
n2

1
−

1
n2

2 )
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Figure 6.12 Electron Transitions Responsible for the Various Series of Lines Observed in the Emission Spectrum
of Hydrogen

The Lyman series of lines is due to transitions from higher-energy orbits to the lowest-energy orbit (n = 1); these
transitions release a great deal of energy, corresponding to radiation in the ultraviolet portion of the
electromagnetic spectrum. The Paschen, Brackett, and Pfund series of lines are due to transitions from higher-
energy orbits to orbits with n = 3, 4, and 5, respectively; these transitions release substantially less energy,
corresponding to infrared radiation. (Orbits are not drawn to scale.)

In contemporary applications, electron transitions are used in timekeeping that
needs to be exact. Telecommunications systems, such as cell phones, depend on
timing signals that are accurate to within a millionth of a second per day, as are the
devices that control the US power grid. Global positioning system (GPS) signals
must be accurate to within a billionth of a second per day, which is equivalent to
gaining or losing no more than one second in 1,400,000 years. Quantifying time
requires finding an event with an interval that repeats on a regular basis. To
achieve the accuracy required for modern purposes, physicists have turned to the
atom. The current standard used to calibrate clocks is the cesium atom.
Supercooled cesium atoms are placed in a vacuum chamber and bombarded with
microwaves whose frequencies are carefully controlled. When the frequency is
exactly right, the atoms absorb enough energy to undergo an electronic transition
to a higher-energy state. Decay to a lower-energy state emits radiation. The
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microwave frequency is continually adjusted, serving as the clock’s pendulum. In
1967, the second was defined as the duration of 9,192,631,770 oscillations of the
resonant frequency of a cesium atom, called the cesium clock. Research is currently
under way to develop the next generation of atomic clocks that promise to be even
more accurate. Such devices would allow scientists to monitor vanishingly faint
electromagnetic signals produced by nerve pathways in the brain and geologists to
measure variations in gravitational fields, which cause fluctuations in time, that
would aid in the discovery of oil or minerals.
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EXAMPLE  3

The so-called Lyman series of lines in the emission spectrum of hydrogen
corresponds to transitions from various excited states to the n = 1 orbit.
Calculate the wavelength of the lowest-energy line in the Lyman series to
three significant figures. In what region of the electromagnetic spectrum
does it occur?

Given: lowest-energy orbit in the Lyman series

Asked for: wavelength of the lowest-energy Lyman line and corresponding
region of the spectrum

Strategy:

A Substitute the appropriate values into Equation 6.8 (the Rydberg equation)
and solve for λ.

B Use Figure 6.4 "The Electromagnetic Spectrum" to locate the region of the
electromagnetic spectrum corresponding to the calculated wavelength.

Solution:

We can use the Rydberg equation to calculate the wavelength:

A For the Lyman series, n1 = 1. The lowest-energy line is due to a transition
from the n = 2 to n = 1 orbit because they are the closest in energy.

and

λ = 1.215 × 10−7 m = 122 nm

1
λ

= ℛ( 1
n2

1
−

1
n2

2 )

1
λ

= ℛ( 1
n2

1
−

1
n2

2 ) = 1.097 × 107 m−1 ( 1
1

−
1
4 ) = 8.228 × 106 m−1
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B This wavelength is in the ultraviolet region of the spectrum.

Exercise

The Pfund series of lines in the emission spectrum of hydrogen corresponds
to transitions from higher excited states to the n = 5 orbit. Calculate the
wavelength of the second line in the Pfund series to three significant figures.
In which region of the spectrum does it lie?

Answer: 4.65 × 103 nm; infrared

Bohr’s model of the hydrogen atom gave an exact explanation for its observed
emission spectrum. The following are his key contributions to our understanding of
atomic structure:

• Electrons can occupy only certain regions of space, called orbits.
• Orbits closer to the nucleus are lower in energy.
• Electrons can move from one orbit to another by absorbing or emitting

energy, giving rise to characteristic spectra.

Unfortunately, Bohr could not explain why the electron should be restricted to
particular orbits. Also, despite a great deal of tinkering, such as assuming that
orbits could be ellipses rather than circles, his model could not quantitatively
explain the emission spectra of any element other than hydrogen (Figure 6.13 "The
Emission Spectra of Elements Compared with Hydrogen"). In fact, Bohr’s model
worked only for species that contained just one electron: H, He+, Li2+, and so forth.
Scientists needed a fundamental change in their way of thinking about the
electronic structure of atoms to advance beyond the Bohr model.

Chapter 6 The Structure of Atoms

6.3 Atomic Spectra and Models of the Atom 719



Figure 6.13 The Emission Spectra of Elements Compared with Hydrogen

These images show (a) hydrogen gas, which is atomized to hydrogen atoms in the discharge tube; (b) neon; and (c)
mercury.

Thus far we have explicitly considered only the emission of light by atoms in
excited states, which produces an emission spectrum16. The converse, absorption
of light by ground-state atoms to produce an excited state, can also occur,
producing an absorption spectrum17. Because each element has characteristic
emission and absorption spectra, scientists can use such spectra to analyze the
composition of matter, as we describe in Section 6.4 "The Relationship between
Energy and Mass".

Note the Pattern

When an atom emits light, it decays to a lower energy state; when an atom
absorbs light, it is excited to a higher energy state.

16. A spectrum produced by the
emission of light by atoms in
excited states.

17. A spectrum produced by the
absorption of light by ground-
state atoms.
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Applications of Emission and Absorption Spectra

If white light is passed through a sample of hydrogen, hydrogen atoms absorb
energy as an electron is excited to higher energy levels (orbits with n ≥ 2). If the
light that emerges is passed through a prism, it forms a continuous spectrum with
black lines (corresponding to no light passing through the sample) at 656, 468, 434,
and 410 nm. These wavelengths correspond to the n = 2 to n = 3, n = 2 to n = 4, n = 2
to n = 5, and n = 2 to n = 6 transitions. Any given element therefore has both a
characteristic emission spectrum and a characteristic absorption spectrum, which
are essentially complementary images.

Absorption of light by a hydrogen atom. (a) When a hydrogen atom absorbs a photon of light, an electron is
excited to an orbit that has a higher energy and larger value of n. (b) Images of the emission and absorption spectra
of hydrogen are shown here.

Emission and absorption spectra form the basis of spectroscopy, which uses spectra
to provide information about the structure and the composition of a substance or
an object. In particular, astronomers use emission and absorption spectra to
determine the composition of stars and interstellar matter. As an example, consider
the spectrum of sunlight shown in Figure 6.14 "The Visible Spectrum of Sunlight".
Because the sun is very hot, the light it emits is in the form of a continuous
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emission spectrum. Superimposed on it, however, is a series of dark lines due
primarily to the absorption of specific frequencies of light by cooler atoms in the
outer atmosphere of the sun. By comparing these lines with the spectra of elements
measured on Earth, we now know that the sun contains large amounts of hydrogen,
iron, and carbon, along with smaller amounts of other elements. During the solar
eclipse of 1868, the French astronomer Pierre Janssen (1824–1907) observed a set of
lines that did not match those of any known element. He suggested that they were
due to the presence of a new element, which he named helium, from the Greek
helios, meaning “sun.” Helium was finally discovered in uranium ores on Earth in
1895.

Figure 6.14 The Visible Spectrum of Sunlight

The characteristic dark lines are mostly due to the absorption of light by elements that are present in the cooler
outer part of the sun’s atmosphere; specific elements are indicated by the labels. The lines at 628 and 687 nm,
however, are due to the absorption of light by oxygen molecules in Earth’s atmosphere.

The familiar red color of “neon” signs used in advertising is due to the emission
spectrum of neon shown in part (b) in Figure 6.13 "The Emission Spectra of
Elements Compared with Hydrogen". Similarly, the blue and yellow colors of
certain street lights are caused, respectively, by mercury and sodium discharges. In
all these cases, an electrical discharge excites neutral atoms to a higher energy
state, and light is emitted when the atoms decay to the ground state. In the case of
mercury, most of the emission lines are below 450 nm, which produces a blue light
(part (c) in Figure 6.13 "The Emission Spectra of Elements Compared with
Hydrogen"). In the case of sodium, the most intense emission lines are at 589 nm,
which produces an intense yellow light.
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Sodium and mercury spectra. Many street lights use bulbs that contain sodium or mercury vapor. Due to the very
different emission spectra of these elements, they emit light of different colors.

The Chemistry of Fireworks

Figure 6.15 The Chemistry of Fireworks
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(a) In the “multibreak” shell used for fireworks, the chambers contain mixtures of fuels and oxidizers plus
compounds for special effects (“stars”) connected by time-delay fuses so that the chambers explode in stages. (b)
The finale of a fireworks display usually consists of many shells fired simultaneously to give a dazzling multicolor
display. The labels indicate the substances that are responsible for the colors of some of the fireworks shown.

The colors of fireworks are also due to atomic emission spectra. As shown in part (a)
in Figure 6.15 "The Chemistry of Fireworks", a typical shell used in a fireworks
display contains gunpowder to propel the shell into the air and a fuse to initiate a
variety of redox reactions that produce heat and small explosions. Thermal energy
excites the atoms to higher energy states; as they decay to lower energy states, the
atoms emit light that gives the familiar colors. When oxidant/reductant mixtures
listed in Table 6.2 "Common Chemicals Used in the Manufacture of Fireworks*" are
ignited, a flash of white or yellow light is produced along with a loud bang.
Achieving the colors shown in part (b) in Figure 6.15 "The Chemistry of Fireworks"
requires adding a small amount of a substance that has an emission spectrum in the
desired portion of the visible spectrum. For example, sodium is used for yellow
because of its 589 nm emission lines. The intense yellow color of sodium would
mask most other colors, so potassium and ammonium salts, rather than sodium
salts, are usually used as oxidants to produce other colors, which explains the
preponderance of such salts in Table 6.2 "Common Chemicals Used in the
Manufacture of Fireworks*". Strontium salts, which are also used in highway flares,
emit red light, whereas barium gives a green color. Blue is one of the most difficult
colors to achieve. Copper(II) salts emit a pale blue light, but copper is dangerous to
use because it forms highly unstable explosive compounds with anions such as
chlorate. As you might guess, preparing fireworks with the desired properties is a
complex, challenging, and potentially hazardous process.

Table 6.2 Common Chemicals Used in the Manufacture of Fireworks*

Oxidizers
Fuels

(reductants)
Special effects

ammonium
perchlorate

aluminum
blue flame: copper carbonate, copper sulfate, or
copper oxide

barium chlorate
antimony
sulfide

red flame: strontium nitrate or strontium carbonate

barium nitrate charcoal white flame: magnesium or aluminum

potassium chlorate magnesium yellow flame: sodium oxalate or cryolite (Na3AlF6)

*Almost any combination of an oxidizer and a fuel may be used along with the
compounds needed to produce a desired special effect.
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How a CD player uses a laser
to read a CD. Inside a CD is a
flat, light-reflecting layer called
“land.” On the land are many

Oxidizers
Fuels

(reductants)
Special effects

potassium nitrate sulfur green flame: barium nitrate or barium chlorate

potassium
perchlorate

titanium white smoke: potassium nitrate plus sulfur

colored smoke: potassium chlorate and sulfur, plus
organic dye

whistling noise: potassium benzoate or sodium
salicylate

white sparks: aluminum, magnesium, or titanium

strontium nitrate

gold sparks: iron fillings or charcoal

*Almost any combination of an oxidizer and a fuel may be used along with the
compounds needed to produce a desired special effect.

Lasers

Most light emitted by atoms is polychromatic—containing more than one
wavelength. In contrast, lasers (from light amplification by stimulated emission of
radiation) emit monochromatic light—a single wavelength only. Lasers have many
applications in fiber-optic telecommunications, the reading and recording of
compact discs (CDs) and digital video discs (DVDs), steel cutting, and supermarket
checkout scanners. Laser beams are generated by the same general phenomenon
that gives rise to emission spectra, with one difference: only a single excited state is
produced, which in principle results in only a single frequency of emitted light. In
practice, however, inexpensive commercial lasers actually emit light with a very
narrow range of wavelengths.

The operation of a ruby laser, the first type of laser used
commercially, is shown schematically in Figure 6.16 "A
Ruby Laser". Ruby is an impure form of aluminum oxide
(Al2O3) in which Cr3+ replaces some of the Al3+ ions. The

red color of the gem is caused by the absorption of light
in the blue region of the visible spectrum by Cr3+ ions,
which leaves only the longer wavelengths to be
reflected back to the eye. One end of a ruby bar is coated
with a fully reflecting mirror, and the mirror on the
other end is only partially reflecting. When flashes of
white light from a flash lamp excite the Cr3+ ions, they
initially decay to a relatively long-lived excited state
and can subsequently decay to the ground state by
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“pits” recorded in a spiral-
shaped track. (From the laser’s
point of view, pits are actually
the “bumps” shown here because
the master disc with pits is
duplicated negatively, turning
the pits into bumps.) Pits have
the same light-reflecting surface
as land, but there are differences
in the frequencies of the reflected
light in the pit and the land,
making light reflected by pits
relatively dark compared with
light reflected by land.

emitting a photon of red light. Some of these photons
are reflected back and forth by the mirrored surfaces.
As shown in part (b) in Figure 6.16 "A Ruby Laser", each
time a photon interacts with an excited Cr3+ ion, it can
stimulate that ion to emit another photon that has the
same wavelength and is synchronized (in phase) with the
first wave. This process produces a cascade of photons
traveling back and forth, until the intense beam
emerges through the partially reflecting mirror. Ruby is
only one substance that is used to produce a laser; the
choice of material determines the wavelength of light
emitted, from infrared to ultraviolet, and the light
output can be either continuous or pulsed.

Figure 6.16 A Ruby Laser

(a) This cutaway view of a ruby laser shows the ruby rod, the flash lamp used to excite the Cr3+ ions in the ruby, and
the totally and partially reflective mirrors. (b) This schematic drawing illustrates how light from the flash lamp
excites the Cr3+ ions to a short-lived excited state, which is followed by decay to a longer-lived excited state that is
responsible for the stimulated in-phase emission of light by the laser.

When used in a DVD player or a CD player, light emitted by a laser passes through a
transparent layer of plastic on the CD and is reflected by an underlying aluminum
layer, which contains pits or flat regions that were created when the CD was
recorded. Differences in the frequencies of the transmitted and reflected light are
detected by light-sensitive equipment that converts these differences into binary
code, a series of 1s and 0s, which is translated electronically into recognizable
sounds and images.
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KEY EQUATION

Rydberg equation

Equation 6.8: 1
λ

= ℛ( 1
n2

1
− 1

n2
2 )

Summary

Atoms of individual elements emit light at only specific wavelengths, producing
a line spectrum rather than the continuous spectrum of all wavelengths
produced by a hot object. Niels Bohr explained the line spectrum of the
hydrogen atom by assuming that the electron moved in circular orbits and that
orbits with only certain radii were allowed. Lines in the spectrum were due to
transitions in which an electron moved from a higher-energy orbit with a
larger radius to a lower-energy orbit with smaller radius. The orbit closest to
the nucleus represented the ground state of the atom and was most stable;
orbits farther away were higher-energy excited states. Transitions from an
excited state to a lower-energy state resulted in the emission of light with only
a limited number of wavelengths. Bohr’s model could not, however, explain the
spectra of atoms heavier than hydrogen.

Most light is polychromatic and contains light of many wavelengths. Light that
has only a single wavelength is monochromatic and is produced by devices
called lasers, which use transitions between two atomic energy levels to
produce light in a very narrow range of wavelengths. Atoms can also absorb
light of certain energies, resulting in a transition from the ground state or a
lower-energy excited state to a higher-energy excited state. This produces an
absorption spectrum, which has dark lines in the same position as the bright
lines in the emission spectrum of an element.

KEY TAKEAWAY

• There is an intimate connection between the atomic structure of an
atom and its spectral characteristics.
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CONCEPTUAL PROBLEMS

1. Is the spectrum of the light emitted by isolated atoms of an element discrete or
continuous? How do these spectra differ from those obtained by heating a bulk
sample of a solid element? Explain your answers.

2. Explain why each element has a characteristic emission and absorption
spectra. If spectral emissions had been found to be continuous rather than
discrete, what would have been the implications for Bohr’s model of the atom?

3. Explain the differences between a ground state and an excited state. Describe
what happens in the spectrum of a species when an electron moves from a
ground state to an excited state. What happens in the spectrum when the
electron falls from an excited state to a ground state?

4. What phenomenon causes a neon sign to have a characteristic color? If the
emission spectrum of an element is constant, why do some neon signs have
more than one color?

5. How is light from a laser different from the light emitted by a light source such
as a light bulb? Describe how a laser produces light.
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NUMERICAL  PROBLEMS

1. Using a Bohr model and the transition from n = 2 to n = 3 in an atom with a
single electron, describe the mathematical relationship between an emission
spectrum and an absorption spectrum. What is the energy of this transition?
What does the sign of the energy value represent in this case? What range of
light is associated with this transition?

2. If a hydrogen atom is excited from an n = 1 state to an n = 3 state, how much
energy does this correspond to? Is this an absorption or an emission? What is
the wavelength of the photon involved in this process? To what region of the
electromagnetic spectrum does this correspond?

3. The hydrogen atom emits a photon with a 486 nm wavelength, corresponding
to an electron decaying from the n = 4 level to which level? What is the color of
the emission?

4. An electron in a hydrogen atom can decay from the n = 3 level to n = 2 level.
What is the color of the emitted light? What is the energy of this transition?

5. Calculate the wavelength and energy of the photon that gives rise to the third
line in order of increasing energy in the Lyman series in the emission spectrum
of hydrogen. In what region of the spectrum does this wavelength occur?
Describe qualitatively what the absorption spectrum looks like.

6. The wavelength of one of the lines in the Lyman series of hydrogen is 121 nm.
In what region of the spectrum does this occur? To which electronic transition
does this correspond?

7. The emission spectrum of helium is shown. What change in energy (ΔE) in
kilojoules per mole gives rise to each line?
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8. Removing an electron from solid potassium requires 222 kJ/mol. Would you
expect to observe a photoelectric effect for potassium using a photon of blue
light (λ = 485 nm)? What is the longest wavelength of energy capable of
ejecting an electron from potassium? What is the corresponding color of light
of this wavelength?

9. The binding energy of an electron is the energy needed to remove an electron
from its lowest energy state. According to Bohr’s postulates, calculate the
binding energy of an electron in a hydrogen atom in kilojoules per mole. What
wavelength in nanometers is required to remove such an electron?

10. As a radio astronomer, you have observed spectral lines for hydrogen
corresponding to a state with n = 320, and you would like to produce these lines
in the laboratory. Is this feasible? Why or why not?
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ANSWERS

1. 656 nm; red light

3. n = 2, blue-green light

5. 97.2 nm, 2.04 × 10−18 J/photon, ultraviolet light, absorption spectrum is a
single dark line at a wavelength of 97.2 nm

7. Violet: 390 nm, 307 kJ/mol photons; Blue-purple: 440 nm, 272 kJ/mol photons;
Blue-green: 500 nm, 239 kJ/mol photons; Orange: 580 nm, 206 kJ/mol photons;
Red: 650 nm, 184 kJ/mol photons

9. 1313 kJ/mol, λ ≤ 91.1 nm
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6.4 The Relationship between Energy and Mass

LEARNING OBJECTIVE

1. To understand the wave–particle duality of matter.

Einstein’s photons of light were individual packets of energy having many of the
characteristics of particles. Recall that the collision of an electron (a particle) with a
sufficiently energetic photon can eject a photoelectron from the surface of a metal.
Any excess energy is transferred to the electron and is converted to the kinetic
energy of the ejected electron. Einstein’s hypothesis that energy is concentrated in
localized bundles, however, was in sharp contrast to the classical notion that
energy is spread out uniformly in a wave. We now describe Einstein’s theory of the
relationship between energy and mass, a theory that others built on to develop our
current model of the atom.

The Wave Character of Matter

Einstein initially assumed that photons had zero mass, which made them a peculiar
sort of particle indeed. In 1905, however, he published his special theory of
relativity, which related energy and mass according to the following equation:

Equation 6.13

According to this theory, a photon of wavelength λ and frequency ν has a nonzero
mass, which is given as follows:

Equation 6.14

That is, light, which had always been regarded as a wave, also has properties typical
of particles, a condition known as wave–particle duality18. Depending on
conditions, light could be viewed as either a wave or a particle.

E = hν =
hc

λ
= mc2

m =
E

c2 =
hν

c2 =
h

λc

18. A principle that matter and
energy have properties typical
of both waves and particles.
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In 1922, the American physicist Arthur Compton (1892–1962) reported the results of
experiments involving the collision of x-rays and electrons that supported the
particle nature of light. At about the same time, a young French physics student,
Louis de Broglie (1892–1972), began to wonder whether the converse was true:
Could particles exhibit the properties of waves? In his PhD dissertation submitted to
the Sorbonne in 1924, de Broglie proposed that a particle such as an electron could
be described by a wave whose wavelength is given by

Equation 6.15

where h is Planck’s constant, m is the mass of the particle, and v is the velocity of
the particle. This revolutionary idea was quickly confirmed by American physicists
Clinton Davisson (1881–1958) and Lester Germer (1896–1971), who showed that
beams of electrons, regarded as particles, were diffracted by a sodium chloride
crystal in the same manner as x-rays, which were regarded as waves. It was proven
experimentally that electrons do exhibit the properties of waves. For his work, de
Broglie received the Nobel Prize in Physics in 1929.

If particles exhibit the properties of waves, why had no one observed them before?
The answer lies in the numerator of de Broglie’s equation, which is an extremely
small number. As you will calculate in Example 4, Planck’s constant (6.63 × 10−34 J·s)
is so small that the wavelength of a particle with a large mass is too short (less than
the diameter of an atomic nucleus) to be noticeable.

λ =
h

mv
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EXAMPLE  4

Calculate the wavelength of a baseball, which has a mass of 149 g and a
speed of 100 mi/h.

Given: mass and speed of object

Asked for: wavelength

Strategy:

A Convert the speed of the baseball to the appropriate SI units: meters per
second.

B Substitute values into Equation 6.15 and solve for the wavelength.

Solution:

The wavelength of a particle is given by λ = h/mv. We know that m = 0.149 kg,
so all we need to find is the speed of the baseball:

B Recall that the joule is a derived unit, whose units are (kg·m2)/s2. Thus the
wavelength of the baseball is

(You should verify that the units cancel to give the wavelength in meters.)
Given that the diameter of the nucleus of an atom is approximately 10−14 m,
the wavelength of the baseball is almost unimaginably small.

Exercise

Calculate the wavelength of a neutron that is moving at 3.00 × 103 m/s.

v = (
100 mi

h ) (
1 h

60 min ) (
1 min

60 s ) (
1.609 km

mi ) ( 1000 m
km ) = 44.69 m/s

λ =
6.626 × 10−34 J•s

(0.149 kg)(44.69 m•s−1 )
=

6.626 × 10−34 kg •m 2 • s −2 • s

(0.149 kg )(44.69 m • s−1 )
= 9.95 × 10−35 m
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Answer: 1.32 Å, or 132 pm

As you calculated in Example 4, objects such as a baseball or a neutron have such
short wavelengths that they are best regarded primarily as particles. In contrast,
objects with very small masses (such as photons) have large wavelengths and can be
viewed primarily as waves. Objects with intermediate masses, such as electrons,
exhibit the properties of both particles and waves. Although we still usually think of
electrons as particles, the wave nature of electrons is employed in an electron
microscope, which has revealed most of what we know about the microscopic
structure of living organisms and materials. Because the wavelength of an electron
beam is much shorter than the wavelength of a beam of visible light, this
instrument can resolve smaller details than a light microscope can (Figure 6.17 "A
Comparison of Images Obtained Using a Light Microscope and an Electron
Microscope").

Figure 6.17 A Comparison of Images Obtained Using a Light Microscope and an Electron Microscope

Because of their shorter wavelength, high-energy electrons have a higher resolving power than visible light.
Consequently, an electron microscope (b) is able to resolve finer details than a light microscope (a). (Radiolaria,
which are shown here, are unicellular planktonic organisms.)

Standing Waves

De Broglie also investigated why only certain orbits were allowed in Bohr’s model of
the hydrogen atom. He hypothesized that the electron behaves like a standing
wave19, a wave that does not travel in space. An example of a standing wave is the
motion of a string of a violin or guitar. When the string is plucked, it vibrates at
certain fixed frequencies because it is fastened at both ends (Figure 6.18 "Standing
Waves on a Vibrating String"). If the length of the string is L, then the lowest-
energy vibration (the fundamental20) has wavelength

19. A wave that does not travel in
space.

20. The lowest-energy standing
wave.
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Figure 6.18 Standing Waves
on a Vibrating String

Equation 6.16

Higher-energy vibrations (overtones21) are produced when the string is plucked
more strongly; they have wavelengths given by

Equation 6.17

where n has any integral value. Thus the vibrational energy of the string is
quantized, and only certain wavelengths and frequencies are possible. Notice in
Figure 6.18 "Standing Waves on a Vibrating String" that all overtones have one or
more nodes22, points where the string does not move. The amplitude of the wave at
a node is zero.

Quantized vibrations and overtones containing nodes
are not restricted to one-dimensional systems, such as
strings. A two-dimensional surface, such as a drumhead,
also has quantized vibrations. Similarly, when the ends
of a string are joined to form a circle, the only allowed
vibrations are those with wavelength

Equation 6.18

2πr = nλ

where r is the radius of the circle. De Broglie argued
that Bohr’s allowed orbits could be understood if the
electron behaved like a standing circular wave (Figure
6.19 "Standing Circular Wave and Destructive
Interference"). The standing wave could exist only if the
circumference of the circle was an integral multiple of
the wavelength such that the propagated waves were all
in phase, thereby increasing the net amplitudes and
causing constructive interference. Otherwise, the propagated waves would be out of
phase, resulting in a net decrease in amplitude and causing destructive interference.

λ

2
= L

λ = 2L

λ =
2L
n

21. The vibration of a standing
wave that is higher in energy
than the fundamental
vibration.

22. The point where the amplitude
of a wave is zero.
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The vibration with n = 1 is the
fundamental and contains no
nodes. Vibrations with higher
values of n are called overtones;
they contain n − 1 nodes.

De Broglie’s idea explained Bohr’s allowed orbits and
energy levels nicely: in the lowest energy level,
corresponding to n = 1 in Equation 6.18, one complete
wavelength would close the circle. Higher energy levels
would have successively higher values of n with a
corresponding number of nodes.

Standing waves are often observed on rivers, reservoirs,
ponds, and lakes when seismic waves from an earthquake travel through the area.
The waves are called seismic seiches, a term first used in 1955 when lake levels in
England and Norway oscillated from side to side as a result of the Assam earthquake
of 1950 in Tibet. They were first described in the Proceedings of the Royal Society in
1755 when they were seen in English harbors and ponds after a large earthquake in
Lisbon, Portugal. Seismic seiches were also observed in many places in North
America after the Alaska earthquake of March 28, 1964. Those occurring in western
reservoirs lasted for two hours or longer, and amplitudes reached as high as nearly
6 ft along the Gulf Coast. The height of seiches is approximately proportional to the
thickness of surface sediments; a deeper channel will produce a higher seiche.

Figure 6.19 Standing Circular Wave and Destructive Interference

(a) In a standing circular wave with n = 5, the circumference of the circle corresponds to exactly five wavelengths,
which results in constructive interference of the wave with itself when overlapping occurs. (b) If the circumference
of the circle is not equal to an integral multiple of wavelengths, then the wave does not overlap exactly with itself,
and the resulting destructive interference will result in cancellation of the wave. Consequently, a standing wave
cannot exist under these conditions.

As you will see, several of de Broglie’s ideas are retained in the modern theory of
the electronic structure of the atom: the wave behavior of the electron, the concept
of standing waves, and the presence of nodes that increase in number as the energy
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level increases. Unfortunately, his explanation also contains one major feature that
we know to be incorrect: in the currently accepted model, the electron in a given
orbit is not always at the same distance from the nucleus.

The Heisenberg Uncertainty Principle

Because a wave is a disturbance that travels in space, it has no fixed position. One
might therefore expect that it would also be hard to specify the exact position of a
particle that exhibits wavelike behavior. This situation was described
mathematically by the German physicist Werner Heisenberg (1901–1976; Nobel
Prize in Physics, 1932), who related the position of a particle to its momentum.
Referring to the electron, Heisenberg stated that “at every moment the electron has
only an inaccurate position and an inaccurate velocity, and between these two
inaccuracies there is this uncertainty relation.” Mathematically, the Heisenberg
uncertainty principle23 states that the uncertainty in the position of a particle (Δx)
multiplied by the uncertainty in its momentum [Δ(mv)] is greater than or equal to
Planck’s constant divided by 4π:

Equation 6.19

Because Planck’s constant is a very small number, the Heisenberg uncertainty
principle is important only for particles such as electrons that have very low
masses. These are the same particles predicted by de Broglie’s equation to have
measurable wavelengths.

If the precise position x of a particle is known absolutely (Δx = 0), then the
uncertainty in its momentum must be infinite:

Equation 6.20

Because the mass of the electron at rest (m) is both constant and accurately known,
the uncertainty in Δ(mv) must be due to the Δv term, which would have to be
infinitely large for Δ(mv) to equal infinity. That is, according to Equation 6.20, the
more accurately we know the exact position of the electron (as Δx→ 0), the less
accurately we know the speed and the kinetic energy of the electron (1/2 mv2)

(Δx)[Δ(mv)] ≥
h

4π

Δ(mv) =
h

4π(Δx)
=

h

4π(0)
= ∞

23. A principle stating that the
uncertainty in the position of a
particle (Δx) multiplied by
the uncertainty in its
momentum [Δ(mv)] is
greater than or equal to
Planck’s constant (h) divided
by 4π: Δx[Δ(mv)] ≥ h/4π.
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because Δ(mv) → ∞. Conversely, the more accurately we know the precise
momentum (and the energy) of the electron [as Δ(mv) → 0], then Δx→ ∞ and we
have no idea where the electron is.

Bohr’s model of the hydrogen atom violated the Heisenberg uncertainty principle
by trying to specify simultaneously both the position (an orbit of a particular
radius) and the energy (a quantity related to the momentum) of the electron.
Moreover, given its mass and wavelike nature, the electron in the hydrogen atom
could not possibly orbit the nucleus in a well-defined circular path as predicted by
Bohr. You will see, however, that the most probable radius of the electron in the
hydrogen atom is exactly the one predicted by Bohr’s model.
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EXAMPLE  5

Calculate the minimum uncertainty in the position of the pitched baseball
from Example 4 that has a mass of exactly 149 g and a speed of 100 ± 1 mi/h.

Given: mass and speed of object

Asked for: minimum uncertainty in its position

Strategy:

A Rearrange the inequality that describes the Heisenberg uncertainty
principle (Equation 6.19) to solve for the minimum uncertainty in the
position of an object (Δx).

B Find Δv by converting the velocity of the baseball to the appropriate SI
units: meters per second.

C Substitute the appropriate values into the expression for the inequality
and solve for Δx.

Solution:

A The Heisenberg uncertainty principle tells us that (Δx)[Δ(mv)] = h/4π.
Rearranging the inequality gives

B We know that h = 6.626 × 10−34 J·s and m = 0.149 kg. Because there is no
uncertainty in the mass of the baseball, Δ(mv) = mΔv and Δv = ±1 mi/h. We
have

C Therefore,

Δx ≥ ( h

4π ) ( 1
Δ(mv) )

Δv = (
1 mi

h ) (
1 h

60 min ) (
1 min

60 s ) (
1.609 km

mi ) ( 1000 m
km ) = 0.4469 m/s
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Inserting the definition of a joule (1 J = 1 kg·m2/s2) gives

This is equal to 3.12 × 10−32 inches. We can safely say that if a batter
misjudges the speed of a fastball by 1 mi/h (about 1%), he will not be able to
blame Heisenberg’s uncertainty principle for striking out.

Exercise

Calculate the minimum uncertainty in the position of an electron traveling
at one-third the speed of light, if the uncertainty in its speed is ±0.1%.
Assume its mass to be equal to its mass at rest.

Answer: 6 × 10−10 m, or 0.6 nm (about the diameter of a benzene molecule)

KEY EQUATIONS

Einstein’s relationship between mass and energy

Equation 6.13: E = hν = hc
λ

= mc2

De Broglie’s relationship between mass, speed, and wavelength

Equation 6.15: λ = h
mv

Heisenberg’s uncertainty principle

Equation 6.19: (Δx)[Δ(mv)] ≥ h
4π

Δx ≥ ( 6.626 × 10−34 J•s
4 (3.1416) ) ( 1

(0.149 kg)(0.4469 m•s−1 )

Δx ≥




6.626 × 10−34 kg •m 2 • s

4 (3.1416)( s2 )








1 s

(0.149 kg )(0.4469 m )





≥ 7.92 × 10−34 m
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Summary

The modern model for the electronic structure of the atom is based on
recognizing that an electron possesses particle and wave properties, the so-
called wave–particle duality. Louis de Broglie showed that the wavelength of a
particle is equal to Planck’s constant divided by the mass times the velocity of
the particle. The electron in Bohr’s circular orbits could thus be described as a
standing wave, one that does not move through space. Standing waves are
familiar from music: the lowest-energy standing wave is the fundamental
vibration, and higher-energy vibrations are overtones and have successively
more nodes, points where the amplitude of the wave is always zero. Werner
Heisenberg’s uncertainty principle states that it is impossible to precisely
describe both the location and the speed of particles that exhibit wavelike
behavior.

KEY TAKEAWAY

• An electron possesses both particle and wave properties.
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CONCEPTUAL PROBLEMS

1. Explain what is meant by each term and illustrate with a sketch:

a. standing wave
b. fundamental
c. overtone
d. node

2. How does Einstein’s theory of relativity illustrate the wave–particle duality of
light? What properties of light can be explained by a wave model? What
properties can be explained by a particle model?

3. In the modern theory of the electronic structure of the atom, which of de
Broglie’s ideas have been retained? Which proved to be incorrect?

4. According to Bohr, what is the relationship between an atomic orbit and the
energy of an electron in that orbit? Is Bohr’s model of the atom consistent with
Heisenberg’s uncertainty principle? Explain your answer.

5. The development of ideas frequently builds on the work of predecessors.
Complete the following chart by filling in the names of those responsible for
each theory shown.
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ANSWER

5.

NUMERICAL  PROBLEMS

1. How much heat is generated by shining a carbon dioxide laser with a
wavelength of 1.065 μm on a 68.95 kg sample of water if 1.000 mol of photons is
absorbed and converted to heat? Is this enough heat to raise the temperature
of the water 4°C?

2. Show the mathematical relationship between energy and mass and between
wavelength and mass. What is the effect of doubling the

a. mass of an object on its energy?
b. mass of an object on its wavelength?
c. frequency on its mass?

3. What is the de Broglie wavelength of a 39 g bullet traveling at 1020 m/s ± 10 m/
s? What is the minimum uncertainty in the bullet’s position?

4. What is the de Broglie wavelength of a 6800 tn aircraft carrier traveling at 18 ±
0.1 knots (1 knot = 1.15 mi/h)? What is the minimum uncertainty in its
position?

5. Calculate the mass of a particle if it is traveling at 2.2 × 106 m/s and has a
frequency of 6.67 × 107 Hz. If the uncertainty in the velocity is known to be
0.1%, what is the minimum uncertainty in the position of the particle?

6. Determine the wavelength of a 2800 lb automobile traveling at 80 mi/h ± 3%.
How does this compare with the diameter of the nucleus of an atom? You are
standing 3 in. from the edge of the highway. What is the minimum uncertainty
in the position of the automobile in inches?
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ANSWERS

1. E = 112.3 kJ, ΔT = 0.3893°C, over ten times more light is needed for a 4.0°C
increase in temperature

3. 1.7 × 10−35 m, uncertainty in position is ≥ 1.4 × 10−34 m

5. 9.1 × 10−39 kg, uncertainty in position ≥ 2.6 m
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6.5 Atomic Orbitals and Their Energies

LEARNING OBJECTIVE

1. To apply the results of quantum mechanics to chemistry.

The paradox described by Heisenberg’s uncertainty principle and the wavelike
nature of subatomic particles such as the electron made it impossible to use the
equations of classical physics to describe the motion of electrons in atoms.
Scientists needed a new approach that took the wave behavior of the electron into
account. In 1926, an Austrian physicist, Erwin Schrödinger (1887–1961; Nobel Prize
in Physics, 1933), developed wave mechanics, a mathematical technique that
describes the relationship between the motion of a particle that exhibits wavelike
properties (such as an electron) and its allowed energies. In doing so, Schrödinger
developed the theory of quantum mechanics24, which is used today to describe the
energies and spatial distributions of electrons in atoms and molecules.

Erwin Schrödinger (1887–1961)

Schrödinger’s unconventional approach to atomic theory was typical of his
unconventional approach to life. He was notorious for his intense dislike of
memorizing data and learning from books. When Hitler came to power in
Germany, Schrödinger escaped to Italy. He then worked at Princeton University
in the United States but eventually moved to the Institute for Advanced Studies
in Dublin, Ireland, where he remained until his retirement in 1955.

Although quantum mechanics uses sophisticated mathematics, you do not need to
understand the mathematical details to follow our discussion of its general
conclusions. We focus on the properties of the wave functions that are the solutions
of Schrödinger’s equations.

Wave Functions

A wave function (Ψ)25Ψ is the uppercase Greek psi. is a mathematical function
that relates the location of an electron at a given point in space (identified by x, y,

24. A theory developed by Erwin
Schrödinger that describes the
energies and spatial
distributions of electrons in
atoms and molecules.

25. A mathematical function that
relates the location of an
electron at a given point in
space to the amplitude of its
wave, which corresponds to its
energy.
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and z coordinates) to the amplitude of its wave, which corresponds to its energy.
Thus each wave function is associated with a particular energy E. The properties of
wave functions derived from quantum mechanics are summarized here:

• A wave function uses three variables to describe the position of an
electron. A fourth variable is usually required to fully describe the
location of objects in motion. Three specify the position in space (as
with the Cartesian coordinates x, y, and z), and one specifies the time at
which the object is at the specified location. For example, if you wanted
to intercept an enemy submarine, you would need to know its latitude,
longitude, and depth, as well as the time at which it was going to be at
this position (Figure 6.20 "The Four Variables (Latitude, Longitude,
Depth, and Time) Required to Precisely Locate an Object"). For
electrons, we can ignore the time dependence because we will be using
standing waves, which by definition do not change with time, to
describe the position of an electron.

Figure 6.20 The Four Variables (Latitude, Longitude, Depth, and Time) Required to Precisely Locate an Object

If you are the captain of a ship trying to intercept an enemy submarine, you need to deliver your depth charge to
the right location at the right time.
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• The magnitude of the wave function at a particular point in space
is proportional to the amplitude of the wave at that point. Many
wave functions are complex functions, which is a mathematical term

indicating that they contain −1
⎯ ⎯⎯⎯⎯

√ , represented as i. Hence the
amplitude of the wave has no real physical significance. In contrast,
the sign of the wave function (either positive or negative) corresponds
to the phase of the wave, which will be important in our discussion of
chemical bonding in Chapter 9 "Molecular Geometry and Covalent
Bonding Models". The sign of the wave function should not be confused
with a positive or negative electrical charge.

• The square of the wave function at a given point is proportional to
the probability of finding an electron at that point, which leads to
a distribution of probabilities in space. The square of the wave

function (Ψ2) is always a real quantity [recall that ( −1
⎯ ⎯⎯⎯⎯

√ )
2

= −1] that
is proportional to the probability of finding an electron at a given
point.More accurately, the probability is given by the product of the
wave function Ψ and its complex conjugate Ψ*, in which all terms that
contain i are replaced by −i. We use probabilities because, according to
Heisenberg’s uncertainty principle, we cannot precisely specify the
position of an electron. The probability of finding an electron at any
point in space depends on several factors, including the distance from
the nucleus and, in many cases, the atomic equivalent of latitude and
longitude. As one way of graphically representing the probability
distribution, the probability of finding an electron is indicated by the
density of colored dots, as shown for the ground state of the hydrogen
atom in Figure 6.21 "Probability of Finding the Electron in the Ground
State of the Hydrogen Atom at Different Points in Space".
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Figure 6.21 Probability of Finding the Electron in the Ground State of the Hydrogen Atom at Different Points in
Space

(a) The density of the dots shows electron probability. (b) In this plot of Ψ2 versus r for the ground state of the
hydrogen atom, the electron probability density is greatest at r = 0 (the nucleus) and falls off with increasing r.
Because the line never actually reaches the horizontal axis, the probability of finding the electron at very large
values of r is very small but not zero.

• Describing the electron distribution as a standing wave leads to
sets of quantum numbers that are characteristic of each wave
function. From the patterns of one- and two-dimensional standing
waves shown in Figure 6.18 "Standing Waves on a Vibrating String"
and Figure 6.19 "Standing Circular Wave and Destructive Interference",
you might expect (correctly) that the patterns of three-dimensional
standing waves would be complex. Fortunately, however, in the 18th
century, a French mathematician, Adrien Legendre (1752–1783),
developed a set of equations to describe the motion of tidal waves on
the surface of a flooded planet. Schrödinger incorporated Legendre’s
equations into his wave functions. The requirement that the waves
must be in phase with one another to avoid cancellation and produce a
standing wave results in a limited number of solutions (wave
functions), each of which is specified by a set of numbers called
quantum numbers26.

26. A unique set of numbers that
specifies a wave function (a
solution to the Schrödinger
equation), which provides
important information about
the energy and spatial
distribution of an electron.
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• Each wave function is associated with a particular energy. As in
Bohr’s model, the energy of an electron in an atom is quantized; it can
have only certain allowed values. The major difference between Bohr’s
model and Schrödinger’s approach is that Bohr had to impose the idea
of quantization arbitrarily, whereas in Schrödinger’s approach,
quantization is a natural consequence of describing an electron as a
standing wave.

Quantum Numbers

Schrödinger’s approach uses three quantum numbers (n, l, and ml) to specify any

wave function. The quantum numbers provide information about the spatial
distribution of an electron. Although n can be any positive integer, only certain
values of l and ml are allowed for a given value of n.

The Principal Quantum Number

The principal quantum number (n)27 tells the average relative distance of an
electron from the nucleus:

Equation 6.21

n = 1, 2, 3, 4,…

As n increases for a given atom, so does the average distance of an electron from the
nucleus. A negatively charged electron that is, on average, closer to the positively
charged nucleus is attracted to the nucleus more strongly than an electron that is
farther out in space. This means that electrons with higher values of n are easier to
remove from an atom. All wave functions that have the same value of n are said to
constitute a principal shell28 because those electrons have similar average
distances from the nucleus. As you will see, the principal quantum number n
corresponds to the n used by Bohr to describe electron orbits and by Rydberg to
describe atomic energy levels.

The Azimuthal Quantum Number

The second quantum number is often called the azimuthal quantum number (l)29.
The value of l describes the shape of the region of space occupied by the electron.
The allowed values of l depend on the value of n and can range from 0 to n − 1:

27. One of three quantum numbers
that tells the average relative
distance of an electron from
the nucleus.

28. All the wave functions that
have the same value of n
because those electrons have
similar average distances from
the nucleus.

29. One of three quantum numbers
that discribes the shape of the
region of space occupied by an
electron.
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Equation 6.22

l = 0, 1, 2,…, n − 1

For example, if n = 1, l can be only 0; if n = 2, l can be 0 or 1; and so forth. For a given
atom, all wave functions that have the same values of both n and l form a
subshell30. The regions of space occupied by electrons in the same subshell usually
have the same shape, but they are oriented differently in space.

The Magnetic Quantum Number

The third quantum number is the magnetic quantum number (ml)
31. The value of

ml describes the orientation of the region in space occupied by an electron with

respect to an applied magnetic field. The allowed values of ml depend on the value

of l: ml can range from −l to l in integral steps:

Equation 6.23

ml = −l, −l + 1,…, 0,…, l − 1, l

For example, if l = 0, ml can be only 0; if l = 1, ml can be −1, 0, or +1; and if l = 2, ml can

be −2, −1, 0, +1, or +2.

Each wave function with an allowed combination of n, l, and ml values describes an

atomic orbital32, a particular spatial distribution for an electron. For a given set of
quantum numbers, each principal shell has a fixed number of subshells, and each
subshell has a fixed number of orbitals.

30. A group of wave functions that
have the same values of n and
l.

31. One of three quantum numbers
that describes the orientation
of the region of space occupied
by an electron with respect to
an applied magnetic field.

32. A wave function with an
allowed combination of n, l.,
and ml quantum numbers.
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EXAMPLE  6

How many subshells and orbitals are contained within the principal shell
with n = 4?

Given: value of n

Asked for: number of subshells and orbitals in the principal shell

Strategy:

A Given n = 4, calculate the allowed values of l. From these allowed values,
count the number of subshells.

B For each allowed value of l, calculate the allowed values of ml. The sum of
the number of orbitals in each subshell is the number of orbitals in the
principal shell.

Solution:

A We know that l can have all integral values from 0 to n − 1. If n = 4, then l
can equal 0, 1, 2, or 3. Because the shell has four values of l, it has four
subshells, each of which will contain a different number of orbitals,
depending on the allowed values of ml.

B For l = 0, ml can be only 0, and thus the l = 0 subshell has only one orbital.
For l = 1, ml can be 0 or ±1; thus the l = 1 subshell has three orbitals. For l = 2,
ml can be 0, ±1, or ±2, so there are five orbitals in the l = 2 subshell. The last
allowed value of l is l = 3, for which ml can be 0, ±1, ±2, or ±3, resulting in
seven orbitals in the l = 3 subshell. The total number of orbitals in the n = 4
principal shell is the sum of the number of orbitals in each subshell and is
equal to n2:

Exercise

How many subshells and orbitals are in the principal shell with n = 3?

Answer: three subshells; nine orbitals

1
(l=0)

+ 3
(l=1)

+ 5
(l=2)

+ 7
(l=3)

= 16 orbitals = (4 principal shells) 2
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Rather than specifying all the values of n and l every time we refer to a subshell or
an orbital, chemists use an abbreviated system with lowercase letters to denote the
value of l for a particular subshell or orbital:

l = 0 1 2 3

Designation s p d f

The principal quantum number is named first, followed by the letter s, p, d, or f as
appropriate. These orbital designations are derived from corresponding
spectroscopic characteristics: sharp, principle, diffuse, and fundamental. A 1s orbital
has n = 1 and l = 0; a 2p subshell has n = 2 and l = 1 (and has three 2p orbitals,
corresponding to ml = −1, 0, and +1); a 3d subshell has n = 3 and l = 2 (and has five 3d

orbitals, corresponding to ml = −2, −1, 0, +1, and +2); and so forth.

We can summarize the relationships between the quantum numbers and the
number of subshells and orbitals as follows (Table 6.3 "Values of "):

• Each principal shell has n subshells. For n = 1, only a single subshell is
possible (1s); for n = 2, there are two subshells (2s and 2p); for n = 3,
there are three subshells (3s, 3p, and 3d); and so forth. Every shell has
an ns subshell, any shell with n ≥ 2 also has an np subshell, and any
shell with n ≥ 3 also has an nd subshell. Because a 2d subshell would
require both n = 2 and l = 2, which is not an allowed value of l for n = 2, a
2d subshell does not exist.

• Each subshell has 2l + 1 orbitals. This means that all ns subshells
contain a single s orbital, all np subshells contain three p orbitals, all nd
subshells contain five d orbitals, and all nf subshells contain seven f
orbitals.

Note the Pattern

Each principal shell has n subshells, and each subshell has 2l + 1 orbitals.
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Table 6.3 Values of n, l, and ml through n = 4

n l
Subshell

Designation
ml

Number of Orbitals in
Subshell

Number of Orbitals
in Shell

1 0 1s 0 1 1

0 2s 0 1
2

1 2p −1, 0, 1 3
4

0 3s 0 1

1 3p −1, 0, 1 33

2 3d −2, −1, 0, 1, 2 5

9

0 4s 0 1

1 4p −1, 0, 1 3

2 4d −2, −1, 0, 1, 2 54

3 4f
−3, −2, −1, 0, 1,

2, 3
7

16

Orbital Shapes

An orbital is the quantum mechanical refinement of Bohr’s orbit. In contrast to his
concept of a simple circular orbit with a fixed radius, orbitals are mathematically
derived regions of space with different probabilities of having an electron.

One way of representing electron probability distributions was illustrated in Figure
6.21 "Probability of Finding the Electron in the Ground State of the Hydrogen Atom
at Different Points in Space" for the 1s orbital of hydrogen. Because Ψ2 gives the
probability of finding an electron in a given volume of space (such as a cubic
picometer), a plot of Ψ2 versus distance from the nucleus (r) is a plot of the
probability density. The 1s orbital is spherically symmetrical, so the probability of
finding a 1s electron at any given point depends only on its distance from the
nucleus. The probability density is greatest at r = 0 (at the nucleus) and decreases
steadily with increasing distance. At very large values of r, the electron probability
density is very small but not zero.

In contrast, we can calculate the radial probability (the probability of finding a 1s
electron at a distance r from the nucleus) by adding together the probabilities of an
electron being at all points on a series of x spherical shells of radius r1, r2, r3,…, rx −

1, rx. In effect, we are dividing the atom into very thin concentric shells, much like
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the layers of an onion (part (a) in Figure 6.22 "Most Probable Radius for the Electron
in the Ground State of the Hydrogen Atom"), and calculating the probability of
finding an electron on each spherical shell. Recall that the electron probability
density is greatest at r = 0 (part (b) in Figure 6.22 "Most Probable Radius for the
Electron in the Ground State of the Hydrogen Atom"), so the density of dots is
greatest for the smallest spherical shells in part (a) in Figure 6.22 "Most Probable
Radius for the Electron in the Ground State of the Hydrogen Atom". In contrast, the
surface area of each spherical shell is equal to 4πr2, which increases very rapidly
with increasing r (part (c) in Figure 6.22 "Most Probable Radius for the Electron in
the Ground State of the Hydrogen Atom"). Because the surface area of the spherical
shells increases more rapidly with increasing r than the electron probability density
decreases, the plot of radial probability has a maximum at a particular distance
(part (d) in Figure 6.22 "Most Probable Radius for the Electron in the Ground State
of the Hydrogen Atom"). Most important, when r is very small, the surface area of a
spherical shell is so small that the total probability of finding an electron close to
the nucleus is very low; at the nucleus, the electron probability vanishes (part (d) in
Figure 6.22 "Most Probable Radius for the Electron in the Ground State of the
Hydrogen Atom").

Figure 6.22 Most Probable Radius for the Electron in the Ground State of the Hydrogen Atom
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(a) Imagine dividing the atom’s total volume into very thin concentric shells as shown in the onion drawing. (b) A
plot of electron probability density Ψ2 versus r shows that the electron probability density is greatest at r = 0 and
falls off smoothly with increasing r. The density of the dots is therefore greatest in the innermost shells of the onion.
(c) The surface area of each shell, given by 4πr2, increases rapidly with increasing r. (d) If we count the number of
dots in each spherical shell, we obtain the total probability of finding the electron at a given value of r. Because the
surface area of each shell increases more rapidly with increasing r than the electron probability density decreases, a
plot of electron probability versus r (the radial probability) shows a peak. This peak corresponds to the most
probable radius for the electron, 52.9 pm, which is exactly the radius predicted by Bohr’s model of the hydrogen
atom.

For the hydrogen atom, the peak in the radial probability plot occurs at r = 0.529 Å
(52.9 pm), which is exactly the radius calculated by Bohr for the n = 1 orbit. Thus the
most probable radius obtained from quantum mechanics is identical to the radius
calculated by classical mechanics. In Bohr’s model, however, the electron was
assumed to be at this distance 100% of the time, whereas in the Schrödinger model,
it is at this distance only some of the time. The difference between the two models
is attributable to the wavelike behavior of the electron and the Heisenberg
uncertainty principle.

Figure 6.23 "Probability Densities for the 1" compares the electron probability
densities for the hydrogen 1s, 2s, and 3s orbitals. Note that all three are spherically
symmetrical. For the 2s and 3s orbitals, however (and for all other s orbitals as well),
the electron probability density does not fall off smoothly with increasing r.
Instead, a series of minima and maxima are observed in the radial probability plots
(part (c) in Figure 6.23 "Probability Densities for the 1"). The minima correspond to
spherical nodes (regions of zero electron probability), which alternate with
spherical regions of nonzero electron probability.
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Figure 6.23 Probability Densities for the 1s, 2s, and 3s Orbitals of the Hydrogen Atom

(a) The electron probability density in any plane that contains the nucleus is shown. Note the presence of circular
regions, or nodes, where the probability density is zero. (b) Contour surfaces enclose 90% of the electron probability,
which illustrates the different sizes of the 1s, 2s, and 3s orbitals. The cutaway drawings give partial views of the
internal spherical nodes. The orange color corresponds to regions of space where the phase of the wave function is
positive, and the blue color corresponds to regions of space where the phase of the wave function is negative. (c) In
these plots of electron probability as a function of distance from the nucleus (r) in all directions (radial probability),
the most probable radius increases as n increases, but the 2s and 3s orbitals have regions of significant electron
probability at small values of r.

s Orbitals

Three things happen to s orbitals as n increases (Figure 6.23 "Probability Densities
for the 1"):

1. They become larger, extending farther from the nucleus.
2. They contain more nodes. This is similar to a standing wave that has

regions of significant amplitude separated by nodes, points with zero
amplitude.

3. For a given atom, the s orbitals also become higher in energy as n
increases because of their increased distance from the nucleus.
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Figure 6.24 Electron
Probability Distribution for a
Hydrogen 2p Orbital

The nodal plane of zero electron
density separates the two lobes of
the 2p orbital. As in Figure 6.23
"Probability Densities for the 1",
the colors correspond to regions
of space where the phase of the
wave function is positive
(orange) and negative (blue).

Orbitals are generally drawn as three-dimensional surfaces that enclose 90% of the
electron density33, as was shown for the hydrogen 1s, 2s, and 3s orbitals in part (b)
in Figure 6.23 "Probability Densities for the 1". Although such drawings show the
relative sizes of the orbitals, they do not normally show the spherical nodes in the
2s and 3s orbitals because the spherical nodes lie inside the 90% surface.
Fortunately, the positions of the spherical nodes are not important for chemical
bonding.

p Orbitals

Only s orbitals are spherically symmetrical. As the value of l increases, the number
of orbitals in a given subshell increases, and the shapes of the orbitals become more
complex. Because the 2p subshell has l = 1, with three values of ml (−1, 0, and +1),

there are three 2p orbitals.

The electron probability distribution for one of the
hydrogen 2p orbitals is shown in Figure 6.24 "Electron
Probability Distribution for a Hydrogen 2". Because this
orbital has two lobes of electron density arranged along
the z axis, with an electron density of zero in the xy
plane (i.e., the xy plane is a nodal plane), it is a 2pz

orbital. As shown in Figure 6.25 "The Three Equivalent
2", the other two 2p orbitals have identical shapes, but
they lie along the x axis (2px) and y axis (2py),

respectively. Note that each p orbital has just one nodal
plane. In each case, the phase of the wave function for
each of the 2p orbitals is positive for the lobe that points
along the positive axis and negative for the lobe that
points along the negative axis. It is important to
emphasize that these signs correspond to the phase of
the wave that describes the electron motion, not to
positive or negative charges.

33. Electron distributions that are
represented as standing waves.
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Figure 6.25 The Three Equivalent 2p Orbitals of the Hydrogen Atom

The surfaces shown enclose 90% of the total electron probability for the 2px, 2py, and 2pz orbitals. Each orbital is

oriented along the axis indicated by the subscript and a nodal plane that is perpendicular to that axis bisects each
2p orbital. The phase of the wave function is positive (orange) in the region of space where x, y, or z is positive and
negative (blue) where x, y, or z is negative.

Just as with the s orbitals, the size and complexity of the p orbitals for any atom
increase as the principal quantum number n increases. The shapes of the 90%
probability surfaces of the 3p, 4p, and higher-energy p orbitals are, however,
essentially the same as those shown in Figure 6.25 "The Three Equivalent 2".

d Orbitals

Subshells with l = 2 have five d orbitals; the first principal shell to have a d subshell
corresponds to n = 3. The five d orbitals have ml values of −2, −1, 0, +1, and +2.
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Figure 6.26 The Five Equivalent 3d Orbitals of the Hydrogen Atom

The surfaces shown enclose 90% of the total electron probability for the five hydrogen 3d orbitals. Four of the five 3d
orbitals consist of four lobes arranged in a plane that is intersected by two perpendicular nodal planes. These four
orbitals have the same shape but different orientations. The fifth 3d orbital, 3dz2 , has a distinct shape even though
it is mathematically equivalent to the others. The phase of the wave function for the different lobes is indicated by
color: orange for positive and blue for negative.

The hydrogen 3d orbitals, shown in Figure 6.26 "The Five Equivalent 3", have more
complex shapes than the 2p orbitals. All five 3d orbitals contain two nodal surfaces,
as compared to one for each p orbital and zero for each s orbital. In three of the d
orbitals, the lobes of electron density are oriented between the x and y, x and z, and
y and z planes; these orbitals are referred to as the 3dxy, 3dxz, and 3dyz orbitals,

respectively. A fourth d orbital has lobes lying along the x and y axes; this is the
3dx 2−y2 orbital. The fifth 3d orbital, called the 3dz2 orbital, has a unique shape: it
looks like a 2pz orbital combined with an additional doughnut of electron

probability lying in the xy plane. Despite its peculiar shape, the 3dz2 orbital is
mathematically equivalent to the other four and has the same energy. In contrast to
p orbitals, the phase of the wave function for d orbitals is the same for opposite
pairs of lobes. As shown in Figure 6.26 "The Five Equivalent 3", the phase of the
wave function is positive for the two lobes of the dz2 orbital that lie along the z axis,
whereas the phase of the wave function is negative for the doughnut of electron
density in the xy plane. Like the s and p orbitals, as n increases, the size of the d
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orbitals increases, but the overall shapes remain similar to those depicted in Figure
6.26 "The Five Equivalent 3".

f Orbitals

Principal shells with n = 4 can have subshells with l = 3 and ml values of −3, −2, −1, 0,

+1, +2, and +3. These subshells consist of seven f orbitals. Each f orbital has three
nodal surfaces, so their shapes are complex. Because f orbitals are not particularly
important for our purposes, we do not discuss them further, and orbitals with
higher values of l are not discussed at all.

Orbital Energies

Although we have discussed the shapes of orbitals, we have said little about their
comparative energies. We begin our discussion of orbital energies34 by considering
atoms or ions with only a single electron (such as H or He+).

The relative energies of the atomic orbitals with n ≤ 4 for a hydrogen atom are
plotted in Figure 6.27 "Orbital Energy Level Diagram for the Hydrogen Atom"; note
that the orbital energies depend on only the principal quantum number n.
Consequently, the energies of the 2s and 2p orbitals of hydrogen are the same; the
energies of the 3s, 3p, and 3d orbitals are the same; and so forth. The orbital
energies obtained for hydrogen using quantum mechanics are exactly the same as
the allowed energies calculated by Bohr. In contrast to Bohr’s model, however,
which allowed only one orbit for each energy level, quantum mechanics predicts
that there are 4 orbitals with different electron density distributions in the n = 2
principal shell (one 2s and three 2p orbitals), 9 in the n = 3 principal shell, and 16 in
the n = 4 principal shell.The different values of l and ml for the individual orbitals

within a given principal shell are not important for understanding the emission or
absorption spectra of the hydrogen atom under most conditions, but they do
explain the splittings of the main lines that are observed when hydrogen atoms are
placed in a magnetic field. As we have just seen, however, quantum mechanics also
predicts that in the hydrogen atom, all orbitals with the same value of n (e.g., the
three 2p orbitals) are degenerate35, meaning that they have the same energy.
Figure 6.27 "Orbital Energy Level Diagram for the Hydrogen Atom" shows that the
energy levels become closer and closer together as the value of n increases, as
expected because of the 1/n2 dependence of orbital energies.

34. A particular energy associated
with a given set of quantum
numbers.

35. Having the same energy.
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Figure 6.27 Orbital Energy
Level Diagram for the
Hydrogen Atom

Each box corresponds to one
orbital. Note that the difference
in energy between orbitals
decreases rapidly with increasing
values of n.

The energies of the orbitals in any species with only one
electron can be calculated by a minor variation of Bohr’s
equation (Equation 6.9), which can be extended to other
single-electron species by incorporating the nuclear
charge Z (the number of protons in the nucleus):

Equation 6.24

In general, both energy and radius decrease as the
nuclear charge increases. Thus the most stable orbitals
(those with the lowest energy) are those closest to the
nucleus. For example, in the ground state of the
hydrogen atom, the single electron is in the 1s orbital,
whereas in the first excited state, the atom has absorbed
energy and the electron has been promoted to one of
the n = 2 orbitals. In ions with only a single electron, the
energy of a given orbital depends on only n, and all
subshells within a principal shell, such as the px, py, and

pz orbitals, are degenerate.

Effective Nuclear Charges

For an atom or an ion with only a single electron, we can calculate the potential
energy by considering only the electrostatic attraction between the positively
charged nucleus and the negatively charged electron. When more than one electron
is present, however, the total energy of the atom or the ion depends not only on
attractive electron-nucleus interactions but also on repulsive electron-electron
interactions. When there are two electrons, the repulsive interactions depend on
the positions of both electrons at a given instant, but because we cannot specify the
exact positions of the electrons, it is impossible to exactly calculate the repulsive
interactions. Consequently, we must use approximate methods to deal with the
effect of electron-electron repulsions on orbital energies.

If an electron is far from the nucleus (i.e., if the distance r between the nucleus and
the electron is large), then at any given moment, most of the other electrons will be
between that electron and the nucleus. Hence the electrons will cancel a portion of
the positive charge of the nucleus and thereby decrease the attractive interaction
between it and the electron farther away. As a result, the electron farther away
experiences an effective nuclear charge (Zeff)

36 that is less than the actual nuclear

E = −
Z 2

n2 ℛhc

36. The nuclear charge an electron
actually experiences because of
shielding from other electrons
closer to the nucleus.
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charge Z. This effect is called electron shielding37. As the distance between an
electron and the nucleus approaches infinity, Zeff approaches a value of 1 because

all the other (Z − 1) electrons in the neutral atom are, on the average, between it
and the nucleus. If, on the other hand, an electron is very close to the nucleus, then
at any given moment most of the other electrons are farther from the nucleus and
do not shield the nuclear charge. At r ≈ 0, the positive charge experienced by an
electron is approximately the full nuclear charge, or Zeff ≈ Z. At intermediate values

of r, the effective nuclear charge is somewhere between 1 and Z: 1 ≤ Zeff ≤ Z. Thus

the actual Zeff experienced by an electron in a given orbital depends not only on the

spatial distribution of the electron in that orbital but also on the distribution of all
the other electrons present. This leads to large differences in Zeff for different

elements, as shown in Figure 6.28 "Relationship between the Effective Nuclear
Charge " for the elements of the first three rows of the periodic table. Notice that
only for hydrogen does Zeff = Z, and only for helium are Zeff and Z comparable in

magnitude.

Figure 6.28 Relationship between the Effective Nuclear Charge Zeff and the Atomic Number Z for the Outer

Electrons of the Elements of the First Three Rows of the Periodic Table

Except for hydrogen, Zeff is always less than Z, and Zeff increases from left to right as you go across a row.

The energies of the different orbitals for a typical multielectron atom are shown in
Figure 6.29 "Orbital Energy Level Diagram for a Typical Multielectron Atom".
Within a given principal shell of a multielectron atom, the orbital energies increase
with increasing l. An ns orbital always lies below the corresponding np orbital,
which in turn lies below the nd orbital. These energy differences are caused by the
effects of shielding and penetration, the extent to which a given orbital lies inside

37. The effect by which electrons
closer to the nucleus neutralize
a portion of the positive charge
of the nucleus and thereby
decrease the attractive
interaction between the
nucleus and an electron father
away.
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other filled orbitals. As shown in Figure 6.30 "Orbital Penetration", for example, an
electron in the 2s orbital penetrates inside a filled 1s orbital more than an electron
in a 2p orbital does. Hence in an atom with a filled 1s orbital, the Zeff experienced by

a 2s electron is greater than the Zeff experienced by a 2p electron. Consequently, the

2s electron is more tightly bound to the nucleus and has a lower energy, consistent
with the order of energies shown in Figure 6.29 "Orbital Energy Level Diagram for a
Typical Multielectron Atom".

Note the Pattern

Due to electron shielding, Zeff increases more rapidly going across a row of the

periodic table than going down a column.

Figure 6.29 Orbital Energy Level Diagram for a Typical Multielectron Atom

Because of the effects of shielding and the different radial distributions of orbitals with the same value of n but
different values of l, the different subshells are not degenerate in a multielectron atom. (Compare this with Figure
6.27 "Orbital Energy Level Diagram for the Hydrogen Atom".) For a given value of n, the ns orbital is always lower in
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energy than the np orbitals, which are lower in energy than the nd orbitals, and so forth. As a result, some subshells
with higher principal quantum numbers are actually lower in energy than subshells with a lower value of n; for
example, the 4s orbital is lower in energy than the 3d orbitals for most atoms.

Figure 6.30 Orbital Penetration

A comparison of the radial probability distribution of the 2s and 2p orbitals for various states of the hydrogen atom
shows that the 2s orbital penetrates inside the 1s orbital more than the 2p orbital does. Consequently, when an
electron is in the small inner lobe of the 2s orbital, it experiences a relatively large value of Zeff, which causes the

energy of the 2s orbital to be lower than the energy of the 2p orbital.

Notice in Figure 6.29 "Orbital Energy Level Diagram for a Typical Multielectron
Atom" that the difference in energies between subshells can be so large that the
energies of orbitals from different principal shells can become approximately equal.
For example, the energy of the 3d orbitals in most atoms is actually between the
energies of the 4s and the 4p orbitals.
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KEY EQUATION

energy of hydrogen-like orbitals

Equation 6.24: E = − Z 2

n2 ℛhc
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Summary

Because of wave–particle duality, scientists must deal with the probability of an
electron being at a particular point in space. To do so required the development
of quantum mechanics, which uses wave functions (Ψ) to describe the
mathematical relationship between the motion of electrons in atoms and
molecules and their energies. Wave functions have five important properties:
(1) the wave function uses three variables (Cartesian axes x, y, and z) to describe
the position of an electron; (2) the magnitude of the wave function is
proportional to the intensity of the wave; (3) the probability of finding an
electron at a given point is proportional to the square of the wave function at
that point, leading to a distribution of probabilities in space that is often
portrayed as an electron density plot; (4) describing electron distributions as
standing waves leads naturally to the existence of sets of quantum numbers
characteristic of each wave function; and (5) each spatial distribution of the
electron described by a wave function with a given set of quantum numbers has
a particular energy.

Quantum numbers provide important information about the energy and spatial
distribution of an electron. The principal quantum number n can be any
positive integer; as n increases for an atom, the average distance of the electron
from the nucleus also increases. All wave functions with the same value of n
constitute a principal shell in which the electrons have similar average
distances from the nucleus. The azimuthal quantum number l can have
integral values between 0 and n − 1; it describes the shape of the electron
distribution. Wave functions that have the same values of both n and l
constitute a subshell, corresponding to electron distributions that usually
differ in orientation rather than in shape or average distance from the nucleus.
The magnetic quantum number ml can have 2l + 1 integral values, ranging

from −l to +l, and describes the orientation of the electron distribution. Each
wave function with a given set of values of n, l, and ml describes a particular

spatial distribution of an electron in an atom, an atomic orbital.

The four chemically important types of atomic orbital correspond to values of l
= 0, 1, 2, and 3. Orbitals with l = 0 are s orbitals and are spherically symmetrical,
with the greatest probability of finding the electron occurring at the nucleus.
All orbitals with values of n > 1 and l = 0 contain one or more nodes. Orbitals
with l = 1 are p orbitals and contain a nodal plane that includes the nucleus,
giving rise to a dumbbell shape. Orbitals with l = 2 are d orbitals and have more
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complex shapes with at least two nodal surfaces. Orbitals with l = 3 are f
orbitals, which are still more complex.

Because its average distance from the nucleus determines the energy of an
electron, each atomic orbital with a given set of quantum numbers has a
particular energy associated with it, the orbital energy. In atoms or ions with
only a single electron, all orbitals with the same value of n have the same
energy (they are degenerate), and the energies of the principal shells increase
smoothly as n increases. An atom or ion with the electron(s) in the lowest-
energy orbital(s) is said to be in its ground state, whereas an atom or ion in
which one or more electrons occupy higher-energy orbitals is said to be in an
excited state. The calculation of orbital energies in atoms or ions with more
than one electron (multielectron atoms or ions) is complicated by repulsive
interactions between the electrons. The concept of electron shielding, in
which intervening electrons act to reduce the positive nuclear charge
experienced by an electron, allows the use of hydrogen-like orbitals and an
effective nuclear charge (Zeff) to describe electron distributions in more

complex atoms or ions. The degree to which orbitals with different values of l
and the same value of n overlap or penetrate filled inner shells results in
slightly different energies for different subshells in the same principal shell in
most atoms.

KEY TAKEAWAY

• There is a relationship between the motions of electrons in atoms and
molecules and their energies that is described by quantum mechanics.
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CONCEPTUAL PROBLEMS

1. Why does an electron in an orbital with n = 1 in a hydrogen atom have a lower
energy than a free electron (n = ∞)?

2. What four variables are required to fully describe the position of any object in
space? In quantum mechanics, one of these variables is not explicitly
considered. Which one and why?

3. Chemists generally refer to the square of the wave function rather than to the
wave function itself. Why?

4. Orbital energies of species with only one electron are defined by only one
quantum number. Which one? In such a species, is the energy of an orbital
with n = 2 greater than, less than, or equal to the energy of an orbital with n =
4? Justify your answer.

5. In each pair of subshells for a hydrogen atom, which has the higher energy?
Give the principal and the azimuthal quantum number for each pair.

a. 1s, 2p
b. 2p, 2s
c. 2s, 3s
d. 3d, 4s

6. What is the relationship between the energy of an orbital and its average
radius? If an electron made a transition from an orbital with an average radius
of 846.4 pm to an orbital with an average radius of 476.1 pm, would an
emission spectrum or an absorption spectrum be produced? Why?

7. In making a transition from an orbital with a principal quantum number of 4
to an orbital with a principal quantum number of 7, does the electron of a
hydrogen atom emit or absorb a photon of energy? What would be the energy
of the photon? To what region of the electromagnetic spectrum does this
energy correspond?

8. What quantum number defines each of the following?

a. the overall shape of an orbital
b. the orientation of an electron with respect to a magnetic field
c. the orientation of an orbital in space
d. the average energy and distance of an electron from the nucleus

9. In an attempt to explain the properties of the elements, Niels Bohr initially
proposed electronic structures for several elements with orbits holding a
certain number of electrons, some of which are in the following table:
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Element Number of Electrons Electrons in orbits with n =

4 3 2 1

H 1 1

He 2 2

Ne 10 8 2

Ar 18 8 8 2

Li 3 1 2

Na 11 1 8 2

K 19 1 8 8 2

Be 4 2 2

a. Draw the electron configuration of each atom based only on the
information given in the table. What are the differences between Bohr’s
initially proposed structures and those accepted today?

b. Using Bohr’s model, what are the implications for the reactivity of each
element?

c. Give the actual electron configuration of each element in the table.

10. What happens to the energy of a given orbital as the nuclear charge Z of a
species increases? In a multielectron atom and for a given nuclear charge, the
Zeff experienced by an electron depends on its value of l. Why?

11. The electron density of a particular atom is divided into two general regions.
Name these two regions and describe what each represents.

12. As the principal quantum number increases, the energy difference between
successive energy levels decreases. Why? What would happen to the electron
configurations of the transition metals if this decrease did not occur?

13. Describe the relationship between electron shielding and Zeff on the
outermost electrons of an atom. Predict how chemical reactivity is affected by
a decreased effective nuclear charge.

14. If a given atom or ion has a single electron in each of the following subshells,
which electron is easier to remove?

a. 2s, 3s
b. 3p, 4d
c. 2p, 1s
d. 3d, 4s
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NUMERICAL  PROBLEMS

1. How many subshells are possible for n = 3? What are they?

2. How many subshells are possible for n = 5? What are they?

3. What value of l corresponds to a d subshell? How many orbitals are in this
subshell?

4. What value of l corresponds to an f subshell? How many orbitals are in this
subshell?

5. State the number of orbitals and electrons that can occupy each subshell.

a. 2s
b. 3p
c. 4d
d. 6f

6. State the number of orbitals and electrons that can occupy each subshell.

a. 1s
b. 4p
c. 5d
d. 4f

7. How many orbitals and subshells are found within the principal shell n = 6?
How do these orbital energies compare with those for n = 4?

8. How many nodes would you expect a 4p orbital to have? A 5s orbital?

9. A p orbital is found to have one node in addition to the nodal plane that bisects
the lobes. What would you predict to be the value of n? If an s orbital has two
nodes, what is the value of n?
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ANSWERS

1. Three subshells, with l = 0 (s), l = 1 (p), and l = 2 (d).

3. A d subshell has l = 2 and contains 5 orbitals.

5. a. 2 electrons; 1 orbital
b. 6 electrons; 3 orbitals
c. 10 electrons; 5 orbitals
d. 14 electrons; 7 orbitals

7. A principal shell with n = 6 contains six subshells, with l = 0, 1, 2, 3, 4, and 5,
respectively. These subshells contain 1, 3, 5, 7, 9, and 11 orbitals, respectively,
for a total of 36 orbitals. The energies of the orbitals with n = 6 are higher than
those of the corresponding orbitals with the same value of l for n = 4.
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6.6 Building Up the Periodic Table

LEARNING OBJECTIVE

1. To write the electron configuration of any element and relate its
electron configuration to its position in the periodic table.

Now you can use the information you learned in Section 6.5 "Atomic Orbitals and
Their Energies" to determine the electronic structure of every element in the
periodic table. The process of describing each atom’s electronic structure consists,
essentially, of beginning with hydrogen and adding one proton and one electron at
a time to create the next heavier element in the table.All stable nuclei other than
hydrogen also contain one or more neutrons. Because neutrons have no electrical
charge, however, they can be ignored in the following discussion. Before
demonstrating how to do this, however, we must introduce the concept of electron
spin and the Pauli principle.

Electron Spin: The Fourth Quantum Number

When scientists analyzed the emission and absorption spectra of the elements more
closely, they saw that for elements having more than one electron, nearly all the
lines in the spectra were actually pairs of very closely spaced lines. Because each
line represents an energy level available to electrons in the atom, there are twice as
many energy levels available as would be predicted solely based on the quantum
numbers n, l, and ml. Scientists also discovered that applying a magnetic field

caused the lines in the pairs to split farther apart. In 1925, two graduate students in
physics in the Netherlands, George Uhlenbeck (1900–1988) and Samuel Goudsmit
(1902–1978), proposed that the splittings were caused by an electron spinning about
its axis, much as Earth spins about its axis. When an electrically charged object
spins, it produces a magnetic moment parallel to the axis of rotation, making it
behave like a magnet. Although the electron cannot be viewed solely as a particle,
spinning or otherwise, it is indisputable that it does have a magnetic moment. This
magnetic moment is called electron spin38.

38. The magnetic moment that
results when an electron spins.
Electrons have two possible
orientations (spin up and spin
down), which are described by
a fourth quantum number (ms).
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Figure 6.31 Electron Spin

In a magnetic field, an electron has two possible orientations with different energies, one with spin up, aligned with
the magnetic field, and one with spin down, aligned against it. All other orientations are forbidden.

In an external magnetic field, the electron has two possible orientations (Figure
6.31 "Electron Spin"). These are described by a fourth quantum number (ms), which

for any electron can have only two possible values, designated +½ (up) and −½
(down) to indicate that the two orientations are opposites; the subscript s is for
spin. An electron behaves like a magnet that has one of two possible orientations,
aligned either with the magnetic field or against it.

The Pauli Principle

The implications of electron spin for chemistry were recognized almost
immediately by an Austrian physicist,Wolfgang Pauli (1900–1958; Nobel Prize in
Physics, 1945), who determined that each orbital can contain no more than two
electrons. He developed the Pauli exclusion principle39: No two electrons in an atom
can have the same values of all four quantum numbers (n, l, ml, ms).

39. A principle stating that no two
electrons in an atom can have
the same value of all four
quantum numbers.
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By giving the values of n, l, and ml, we also specify a particular orbital (e.g., 1s with n

= 1, l = 0, ml = 0). Because ms has only two possible values (+½ or −½), two electrons,

and only two electrons, can occupy any given orbital, one with spin up and one with
spin down. With this information, we can proceed to construct the entire periodic
table, which, as you learned in Chapter 1 "Introduction to Chemistry", was
originally based on the physical and chemical properties of the known elements.
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EXAMPLE  7

List all the allowed combinations of the four quantum numbers (n, l, ml, ms)
for electrons in a 2p orbital and predict the maximum number of electrons
the 2p subshell can accommodate.

Given: orbital

Asked for: allowed quantum numbers and maximum number of electrons in
orbital

Strategy:

A List the quantum numbers (n, l, ml) that correspond to an n = 2p orbital.
List all allowed combinations of (n, l, ml).

B Build on these combinations to list all the allowed combinations of (n, l, ml,
ms).

C Add together the number of combinations to predict the maximum
number of electrons the 2p subshell can accommodate.

Solution:

A For a 2p orbital, we know that n = 2, l = n − 1 = 1, and ml = −l, (−l +1),…, (l − 1),
l. There are only three possible combinations of (n, l, ml): (2, 1, 1), (2, 1, 0),
and (2, 1, −1).

B Because ms is independent of the other quantum numbers and can have
values of only +½ and −½, there are six possible combinations of (n, l, ml, ms):
(2, 1, 1, +½), (2, 1, 1, −½), (2, 1, 0, +½), (2, 1, 0, −½), (2, 1, −1, +½), and (2, 1, −1,
−½).

C Hence the 2p subshell, which consists of three 2p orbitals (2px, 2py, and
2pz), can contain a total of six electrons, two in each orbital.

Exercise

List all the allowed combinations of the four quantum numbers (n, l, ml, ms)
for a 6s orbital, and predict the total number of electrons it can contain.
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Answer: (6, 0, 0, +½), (6, 0, 0, −½); two electrons

Electron Configurations of the Elements

The electron configuration40 of an element is the arrangement of its electrons in
its atomic orbitals. By knowing the electron configuration of an element, we can
predict and explain a great deal of its chemistry.

The Aufbau Principle

We construct the periodic table by following the aufbau principle41 (from German,
meaning “building up”). First we determine the number of electrons in the atom;
then we add electrons one at a time to the lowest-energy orbital available without
violating the Pauli principle. We use the orbital energy diagram of Figure 6.29 "Orbital
Energy Level Diagram for a Typical Multielectron Atom", recognizing that each
orbital can hold two electrons, one with spin up ↑, corresponding to ms = +½, which

is arbitrarily written first, and one with spin down ↓, corresponding to ms = −½. A

filled orbital is indicated by ↑↓, in which the electron spins are said to be paired.
Here is a schematic orbital diagram for a hydrogen atom in its ground state:

From the orbital diagram, we can write the electron configuration in an abbreviated
form in which the occupied orbitals are identified by their principal quantum
number n and their value of l (s, p, d, or f), with the number of electrons in the
subshell indicated by a superscript. For hydrogen, therefore, the single electron is
placed in the 1s orbital, which is the orbital lowest in energy (Figure 6.29 "Orbital
Energy Level Diagram for a Typical Multielectron Atom"), and the electron
configuration is written as 1s1 and read as “one-s-one.”

A neutral helium atom, with an atomic number of 2 (Z = 2), has two electrons. We
place one electron in the orbital that is lowest in energy, the 1s orbital. From the
Pauli exclusion principle, we know that an orbital can contain two electrons with
opposite spin, so we place the second electron in the same orbital as the first but
pointing down, so that the electrons are paired. The orbital diagram for the helium
atom is therefore

40. The arrangement of an
element’s electrons in its
atomic orbitals.

41. The process used to build up
the periodic table by adding
protons one by one to the
nucleus and adding the
corresponding electrons to the
lowest-energy orbital available
without violating the Pauli
exclusion principle.
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written as 1s2, where the superscript 2 implies the pairing of spins. Otherwise, our
configuration would violate the Pauli principle.

The next element is lithium, with Z = 3 and three electrons in the neutral atom. We
know that the 1s orbital can hold two of the electrons with their spins paired.
Figure 6.29 "Orbital Energy Level Diagram for a Typical Multielectron Atom" tells us
that the next lowest energy orbital is 2s, so the orbital diagram for lithium is

This electron configuration is written as 1s22s1.

The next element is beryllium, with Z = 4 and four electrons. We fill both the 1s and
2s orbitals to achieve a 1s22s2 electron configuration:

When we reach boron, with Z = 5 and five electrons, we must place the fifth electron
in one of the 2p orbitals. Because all three 2p orbitals are degenerate, it doesn’t
matter which one we select. The electron configuration of boron is 1s22s22p1:

At carbon, with Z = 6 and six electrons, we are faced with a choice. Should the sixth
electron be placed in the same 2p orbital that already has an electron, or should it
go in one of the empty 2p orbitals? If it goes in an empty 2p orbital, will the sixth
electron have its spin aligned with or be opposite to the spin of the fifth? In short,
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which of the following three orbital diagrams is correct for carbon, remembering
that the 2p orbitals are degenerate?

Because of electron-electron repulsions, it is more favorable energetically for an
electron to be in an unoccupied orbital than in one that is already occupied; hence
we can eliminate choice a. Similarly, experiments have shown that choice b is
slightly higher in energy (less stable) than choice c because electrons in degenerate
orbitals prefer to line up with their spins parallel; thus, we can eliminate choice b.
Choice c illustrates Hund’s rule42 (named after the German physicist Friedrich H.
Hund, 1896–1997), which today says that the lowest-energy electron configuration
for an atom is the one that has the maximum number of electrons with parallel
spins in degenerate orbitals. By Hund’s rule, the electron configuration of carbon,
which is 1s22s22p2, is understood to correspond to the orbital diagram shown in c.
Experimentally, it is found that the ground state of a neutral carbon atom does
indeed contain two unpaired electrons.

When we get to nitrogen (Z = 7, with seven electrons), Hund’s rule tells us that the
lowest-energy arrangement is

with three unpaired electrons. The electron configuration of nitrogen is thus
1s22s22p3.

42. A rule stating that the lowest-
energy electron configuration
for an atom is the one that has
the maximum number of
electrons with parallel spins in
degenerate orbitals.
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At oxygen, with Z = 8 and eight electrons, we have no choice. One electron must be
paired with another in one of the 2p orbitals, which gives us two unpaired electrons
and a 1s22s22p4 electron configuration. Because all the 2p orbitals are degenerate, it
doesn’t matter which one has the pair of electrons.

Similarly, fluorine has the electron configuration 1s22s22p5:

When we reach neon, with Z = 10, we have filled the 2p subshell, giving a 1s22s22p6

electron configuration:

Notice that for neon, as for helium, all the orbitals through the 2p level are
completely filled. This fact is very important in dictating both the chemical
reactivity and the bonding of helium and neon, as you will see.

Valence Electrons

As we continue through the periodic table in this way, writing the electron
configurations of larger and larger atoms, it becomes tedious to keep copying the
configurations of the filled inner subshells. In practice, chemists simplify the
notation by using a bracketed noble gas symbol to represent the configuration of
the noble gas from the preceding row because all the orbitals in a noble gas are
filled. For example, [Ne] represents the 1s22s22p6 electron configuration of neon (Z =
10), so the electron configuration of sodium, with Z = 11, which is 1s22s22p63s1, is
written as [Ne]3s1:

Neon Z = 10 1s22s22p6
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Sodium Z = 11 1s22s22p63s1 = [Ne]3s1

Because electrons in filled inner orbitals are closer to the nucleus and more tightly
bound to it, they are rarely involved in chemical reactions. This means that the
chemistry of an atom depends mostly on the electrons in its outermost shell, which
are called the valence electrons43. The simplified notation allows us to see the
valence-electron configuration more easily. Using this notation to compare the
electron configurations of sodium and lithium, we have:

Sodium 1s22s22p63s1 = [Ne]3s1

Lithium 1s22s1 = [He]2s1

It is readily apparent that both sodium and lithium have one s electron in their
valence shell. We would therefore predict that sodium and lithium have very
similar chemistry, which is indeed the case.

As we continue to build the eight elements of period 3, the 3s and 3p orbitals are
filled, one electron at a time. This row concludes with the noble gas argon, which
has the electron configuration [Ne]3s23p6, corresponding to a filled valence shell.

43. Electrons in the outermost
shell of an atom.
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EXAMPLE  8

Draw an orbital diagram and use it to derive the electron configuration of
phosphorus, Z = 15. What is its valence electron configuration?

Given: atomic number

Asked for: orbital diagram and valence electron configuration for
phosphorus

Strategy:

A Locate the nearest noble gas preceding phosphorus in the periodic table.
Then subtract its number of electrons from those in phosphorus to obtain
the number of valence electrons in phosphorus.

B Referring to Figure 6.29 "Orbital Energy Level Diagram for a Typical
Multielectron Atom", draw an orbital diagram to represent those valence
orbitals. Following Hund’s rule, place the valence electrons in the available
orbitals, beginning with the orbital that is lowest in energy. Write the
electron configuration from your orbital diagram.

C Ignore the inner orbitals (those that correspond to the electron
configuration of the nearest noble gas) and write the valence electron
configuration for phosphorus.

Solution:

A Because phosphorus is in the third row of the periodic table, we know that
it has a [Ne] closed shell with 10 electrons. We begin by subtracting 10
electrons from the 15 in phosphorus.

B The additional five electrons are placed in the next available orbitals,
which Figure 6.29 "Orbital Energy Level Diagram for a Typical Multielectron
Atom" tells us are the 3s and 3p orbitals:

Because the 3s orbital is lower in energy than the 3p orbitals, we fill it first:
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Hund’s rule tells us that the remaining three electrons will occupy the
degenerate 3p orbitals separately but with their spins aligned:

The electron configuration is [Ne]3s23p3.

C We obtain the valence electron configuration by ignoring the inner
orbitals, which for phosphorus means that we ignore the [Ne] closed shell.
This gives a valence-electron configuration of 3s23p3.

Exercise

Draw an orbital diagram and use it to derive the electron configuration of
chlorine, Z = 17. What is its valence electron configuration?

Answer: [Ne]3s23p5; 3s23p5

The general order in which orbitals are filled is depicted in Figure 6.32 "Predicting
the Order in Which Orbitals Are Filled in Multielectron Atoms". Subshells
corresponding to each value of n are written from left to right on successive
horizontal lines, where each row represents a row in the periodic table. The order
in which the orbitals are filled is indicated by the diagonal lines running from the
upper right to the lower left. Accordingly, the 4s orbital is filled prior to the 3d
orbital because of shielding and penetration effects. Consequently, the electron
configuration of potassium, which begins the fourth period, is [Ar]4s1, and the
configuration of calcium is [Ar]4s2. Five 3d orbitals are filled by the next 10
elements, the transition metals, followed by three 4p orbitals. Notice that the last
member of this row is the noble gas krypton (Z = 36), [Ar]4s23d104p6 = [Kr], which
has filled 4s, 3d, and 4p orbitals. The fifth row of the periodic table is essentially the
same as the fourth, except that the 5s, 4d, and 5p orbitals are filled sequentially.
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Figure 6.32 Predicting the Order in Which Orbitals Are Filled in Multielectron Atoms

If you write the subshells for each value of the principal quantum number on successive lines, the observed order in
which they are filled is indicated by a series of diagonal lines running from the upper right to the lower left.

The sixth row of the periodic table will be different from the preceding two because
the 4f orbitals, which can hold 14 electrons, are filled between the 6s and the 5d
orbitals. The elements that contain 4f orbitals in their valence shell are the
lanthanides. When the 6p orbitals are finally filled, we have reached the next (and
last known) noble gas, radon (Z = 86), [Xe]6s24f145d106p6 = [Rn]. In the last row, the
5f orbitals are filled between the 7s and the 6d orbitals, which gives the 14 actinide
elements. Because the large number of protons makes their nuclei unstable, all the
actinides are radioactive.
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EXAMPLE  9

Write the electron configuration of mercury (Z = 80), showing all the inner
orbitals.

Given: atomic number

Asked for: complete electron configuration

Strategy:

Using the orbital diagram in Figure 6.32 "Predicting the Order in Which
Orbitals Are Filled in Multielectron Atoms" and the periodic table as a guide,
fill the orbitals until all 80 electrons have been placed.

Solution:

By placing the electrons in orbitals following the order shown in Figure 6.32
"Predicting the Order in Which Orbitals Are Filled in Multielectron Atoms"
and using the periodic table as a guide, we obtain

1s2 row 1 2 electrons

2s22p6 row 2 8 electrons

3s23p6 row 3 8 electrons

4s23d104p6 row 4 18 electrons

5s24d105p6 row 5 18 electrons

row 1–5 54 electrons

After filling the first five rows, we still have 80 − 54 = 26 more electrons to
accommodate. According to Figure 6.33 "The Periodic Table, Showing How
the Elements Are Grouped According to the Kind of Subshell (", we need to
fill the 6s (2 electrons), 4f (14 electrons), and 5d (10 electrons) orbitals. The
result is mercury’s electron configuration:

1s22s22p63s23p64s23d104p65s24d105p66s24f145d10 = Hg = [Xe]6s24f145d10

with a filled 5d subshell, a 6s24f145d10 valence shell configuration, and a total
of 80 electrons. (You should always check to be sure that the total number of
electrons equals the atomic number.)
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Exercise

Although element 114 is not stable enough to occur in nature, two isotopes
of element 114 were created for the first time in a nuclear reactor in 1999 by
a team of Russian and American scientists. Write the complete electron
configuration for element 114.

Answer: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p2

The electron configurations of the elements are presented in Figure 6.34 "Electron
Configurations of the Elements", which lists the orbitals in the order in which they
are filled. In several cases, the ground state electron configurations are different
from those predicted by Figure 6.32 "Predicting the Order in Which Orbitals Are
Filled in Multielectron Atoms". Some of these anomalies occur as the 3d orbitals are
filled. For example, the observed ground state electron configuration of chromium
is [Ar]4s13d5 rather than the predicted [Ar]4s23d4. Similarly, the observed electron
configuration of copper is [Ar]4s13d10 instead of [Ar]s23d9. The actual electron
configuration may be rationalized in terms of an added stability associated with a
half-filled (ns1, np3, nd5, nf7) or filled (ns2, np6, nd10, nf14) subshell. Given the small
differences between higher energy levels, this added stability is enough to shift an
electron from one orbital to another. In heavier elements, other more complex
effects can also be important, leading to some of the additional anomalies indicated
in Figure 6.34 "Electron Configurations of the Elements". For example, cerium has
an electron configuration of [Xe]6s24f15d1, which is impossible to rationalize in
simple terms. In most cases, however, these apparent anomalies do not have
important chemical consequences.

Note the Pattern

Additional stability is associated with half-filled or filled subshells.

Blocks in the Periodic Table

As you have learned, the electron configurations of the elements explain the
otherwise peculiar shape of the periodic table. Although the table was originally
organized on the basis of physical and chemical similarities between the elements
within groups, these similarities are ultimately attributable to orbital energy levels
and the Pauli principle, which cause the individual subshells to be filled in a
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particular order. As a result, the periodic table can be divided into “blocks”
corresponding to the type of subshell that is being filled, as illustrated in Figure
6.34 "Electron Configurations of the Elements". For example, the two columns on
the left, known as the s block44, consist of elements in which the ns orbitals are
being filled. The six columns on the right, elements in which the np orbitals are
being filled, constitute the p block45. In between are the 10 columns of the d
block46, elements in which the (n − 1)d orbitals are filled. At the bottom lie the 14
columns of the f block47, elements in which the (n − 2)f orbitals are filled. Because
two electrons can be accommodated per orbital, the number of columns in each
block is the same as the maximum electron capacity of the subshell: 2 for ns, 6 for
np, 10 for (n − 1)d, and 14 for (n − 2)f. Within each column, each element has the
same valence electron configuration—for example, ns1 (group 1) or ns2np1 (group
13). As you will see, this is reflected in important similarities in the chemical
reactivity and the bonding for the elements in each column.

Note the Pattern

Because each orbital can have a maximum of 2 electrons, there are 2 columns in
the s block, 6 columns in the p block, 10 columns in the d block, and 14 columns
in the f block.

Figure 6.33 The Periodic Table, Showing How the Elements Are Grouped According to the Kind of Subshell (s, p,
d, f) Being Filled with Electrons in the Valence Shell of Each Element

44. The elements in the left two
columns of the periodic table
in which the ns orbital is being
filled.

45. The elements in the six
columns on the right of the
periodic table in which the np
orbitals are being filled.

46. The elements in the periodic
table in which the (n − 1)d
orbitals are being filled.

47. The elements in the periodic
table in which the (n − 2)f
orbitals are being filled.
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The electron configurations of the elements are in Figure 6.34 "Electron Configurations of the Elements".

Hydrogen and helium are placed somewhat arbitrarily. Although hydrogen is not an
alkali metal, its 1s1 electron configuration suggests a similarity to lithium ([He]2s1)
and the other elements in the first column. Although helium, with a filled ns
subshell, should be similar chemically to other elements with an ns2 electron
configuration, the closed principal shell dominates its chemistry, justifying its
placement above neon on the right. In Chapter 7 "The Periodic Table and Periodic
Trends", we will examine how electron configurations affect the properties and
reactivity of the elements.

Figure 6.34 Electron Configurations of the Elements

The electron configurations of elements indicated in red are exceptions due to the added stability associated with
half-filled and filled subshells. The electron configurations of the elements indicated in blue are also anomalous, but
the reasons for the observed configurations are more complex. For elements after No, the electron configurations are
tentative.
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EXAMPLE  10

Use the periodic table to predict the valence electron configuration of all the
elements of group 2 (beryllium, magnesium, calcium, strontium, barium,
and radium).

Given: series of elements

Asked for: valence electron configurations

Strategy:

A Identify the block in the periodic table to which the group 2 elements
belong. Locate the nearest noble gas preceding each element and identify
the principal quantum number of the valence shell of each element.

B Write the valence electron configuration of each element by first
indicating the filled inner shells using the symbol for the nearest preceding
noble gas and then listing the principal quantum number of its valence shell,
its valence orbitals, and the number of valence electrons in each orbital as
superscripts.

Solution:

A The group 2 elements are in the s block of the periodic table, and as group
2 elements, they all have two valence electrons. Beginning with beryllium,
we see that its nearest preceding noble gas is helium and that the principal
quantum number of its valence shell is n = 2.

B Thus beryllium has an [He]s2 electron configuration. The next element
down, magnesium, is expected to have exactly the same arrangement of
electrons in the n = 3 principal shell: [Ne]s2. By extrapolation, we expect all
the group 2 elements to have an ns2 electron configuration.

Exercise

Use the periodic table to predict the characteristic valence electron
configuration of the halogens in group 17.

Answer: All have an ns2np5 electron configuration, one electron short of a
noble gas electron configuration. (Note that the heavier halogens also have
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filled (n − 1)d10 subshells, as well as an (n − 2)f14 subshell for Rn; these do not,
however, affect their chemistry in any significant way.

Summary

In addition to the three quantum numbers (n, l, ml) dictated by quantum

mechanics, a fourth quantum number is required to explain certain properties
of atoms. This is the electron spin quantum number (ms), which can have

values of +½ or −½ for any electron, corresponding to the two possible
orientations of an electron in a magnetic field. The concept of electron spin has
important consequences for chemistry because the Pauli exclusion principle
implies that no orbital can contain more than two electrons (with opposite
spin). Based on the Pauli principle and a knowledge of orbital energies obtained
using hydrogen-like orbitals, it is possible to construct the periodic table by
filling up the available orbitals beginning with the lowest-energy orbitals (the
aufbau principle), which gives rise to a particular arrangement of electrons for
each element (its electron configuration). Hund’s rule says that the lowest-
energy arrangement of electrons is the one that places them in degenerate
orbitals with their spins parallel. For chemical purposes, the most important
electrons are those in the outermost principal shell, the valence electrons. The
arrangement of atoms in the periodic table results in blocks corresponding to
filling of the ns, np, nd, and nf orbitals to produce the distinctive chemical
properties of the elements in the s block, p block, d block, and f block,
respectively.

KEY TAKEAWAY

• The arrangement of atoms in the periodic table arises from the lowest
energy arrangement of electrons in the valence shell.
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CONCEPTUAL PROBLEMS

1. A set of four quantum numbers specifies each wave function. What
information is given by each quantum number? What does the specified wave
function describe?

2. List two pieces of evidence to support the statement that electrons have a spin.

3. The periodic table is divided into blocks. Identify each block and explain the
principle behind the divisions. Which quantum number distinguishes the
horizontal rows?

4. Identify the element with each ground state electron configuration.

a. [He]2s22p3

b. [Ar]4s23d1

c. [Kr]5s24d105p3

d. [Xe]6s24f 6

5. Identify the element with each ground state electron configuration.

a. [He]2s22p1

b. [Ar]4s23d8

c. [Kr]5s24d105p4

d. [Xe]6s2

6. Propose an explanation as to why the noble gases are inert.

Chapter 6 The Structure of Atoms

6.6 Building Up the Periodic Table 791



NUMERICAL  PROBLEMS

1. How many magnetic quantum numbers are possible for a 4p subshell? A 3d
subshell? How many orbitals are in these subshells?

2. How many magnetic quantum numbers are possible for a 6s subshell? A 4f
subshell? How many orbitals does each subshell contain?

3. If l = 2 and ml = 2, give all the allowed combinations of the four quantum
numbers (n, l, ml, ms) for electrons in the corresponding 3d subshell.

4. Give all the allowed combinations of the four quantum numbers (n, l, ml, ms)
for electrons in a 4d subshell. How many electrons can the 4d orbital
accommodate? How would this differ from a situation in which there were only
three quantum numbers (n, l, m)?

5. Given the following sets of quantum numbers (n, l, ml, ms), identify each
principal shell and subshell.

a. 1, 0, 0, ½
b. 2, 1, 0, ½
c. 3, 2, 0, ½
d. 4, 3, 3, ½

6. Is each set of quantum numbers allowed? Explain your answers.

a. n = 2; l = 1; ml = 2; ms = +½
b. n = 3, l = 0; ml = −1; ms = −½
c. n = 2; l = 2; ml = 1; ms = +½
d. n = 3; l = 2; ml = 2; ms = +½

7. List the set of quantum numbers for each electron in the valence shell of each
element.

a. beryllium
b. xenon
c. lithium
d. fluorine

8. List the set of quantum numbers for each electron in the valence shell of each
element.

a. carbon
b. magnesium
c. bromine
d. sulfur

Chapter 6 The Structure of Atoms

6.6 Building Up the Periodic Table 792



9. Sketch the shape of the periodic table if there were three possible values of ms
for each electron (+½, −½, and 0); assume that the Pauli principle is still valid.

10. Predict the shape of the periodic table if eight electrons could occupy the p
subshell.

11. If the electron could only have spin +½, what would the periodic table look
like?

12. If three electrons could occupy each s orbital, what would be the electron
configuration of each species?

a. sodium
b. titanium
c. fluorine
d. calcium

13. If Hund’s rule were not followed and maximum pairing occurred, how many
unpaired electrons would each species have? How do these numbers compare
with the number found using Hund’s rule?

a. phosphorus
b. iodine
c. manganese

14. Write the electron configuration for each element in the ground state.

a. aluminum
b. calcium
c. sulfur
d. tin
e. nickel
f. tungsten
g. neodymium
h. americium

15. Write the electron configuration for each element in the ground state.

a. boron
b. rubidium
c. bromine
d. germanium
e. vanadium
f. palladium
g. bismuth
h. europium
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16. Give the complete electron configuration for each element.

a. magnesium
b. potassium
c. titanium
d. selenium
e. iodine
f. uranium
g. germanium

17. Give the complete electron configuration for each element.

a. tin
b. copper
c. fluorine
d. hydrogen
e. thorium
f. yttrium
g. bismuth

18. Write the valence electron configuration for each element:

a. samarium
b. praseodymium
c. boron
d. cobalt

19. Using the Pauli exclusion principle and Hund’s rule, draw valence orbital
diagrams for each element.

a. barium
b. neodymium
c. iodine

20. Using the Pauli exclusion principle and Hund’s rule, draw valence orbital
diagrams for each element.

a. chlorine
b. silicon
c. scandium

21. How many unpaired electrons does each species contain?

a. lead
b. cesium
c. copper
d. silicon
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e. selenium

22. How many unpaired electrons does each species contain?

a. helium
b. oxygen
c. bismuth
d. silver
e. boron

23. For each element, give the complete electron configuration, draw the valence
electron configuration, and give the number of unpaired electrons present.

a. lithium
b. magnesium
c. silicon
d. cesium
e. lead

24. Use an orbital diagram to illustrate the aufbau principle, the Pauli exclusion
principle, and Hund’s rule for each element.

a. carbon
b. sulfur

ANSWERS

1. For a 4p subshell, n = 4 and l = 1. The allowed values of the magnetic quantum
number, ml, are therefore +1, 0, −1, corresponding to three 4p orbitals. For a 3d
subshell, n = 3 and l = 2. The allowed values of the magnetic quantum number,
ml, are therefore +2, +1, 0, −1, −2, corresponding to five 3d orbitals.

3. n = 3, l = 2, ml = 2, ms = + 1
2 ;n = 3, l = 2, ml = 2, ms = − 1

2
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6.7 End-of-Chapter Material
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APPLICATION PROBLEMS

1. The lamps in street lights use emission of light from excited states of atoms to
produce a characteristic glow. Light is generated by electron bombardment of
a metal vapor. Of calcium and strontium, which metal vapor would you use to
produce yellow light? Which metal would you use to produce red light?
Calculate the energy associated with each transition and propose an
explanation for the colors of the emitted light.

2. Lasers have useful medical applications because their light is directional
(permitting tight focus of the laser beam for precise cutting), monochromatic,
and intense. Carbon dioxide lasers, emitting at a wavelength of 1.06 × 104 nm,
are typically used in surgery.

a. What are the frequency and energy (in kilojoules per mole) of a photon
from a carbon dioxide laser?

b. Why is monochromatic light desirable in a surgical procedure?
c. Biological tissue consists primarily of water, which absorbs

electromagnetic radiation in the infrared region of the spectrum. Suggest a
plausible reason for using carbon dioxide lasers in surgery.

3. An excimer (meaning “excited dimer”) laser emits light in the ultraviolet
region of the spectrum. An example of such a laser is krypton fluoride (KrF),
which emits light at a wavelength of 248 nm. What is the energy in joules of a
mole of photons emitted from this laser? How much more energetic is a single
photon of this wavelength than a photon from a carbon dioxide laser used in
surgery (10,600 nm)?

4. Wavelengths less than 10 nm are needed to “see” objects on an atomic or
molecular scale. Such imaging can be accomplished with an electron
microscope, which uses electric and magnetic fields to focus and accelerate a
beam of electrons to a high velocity. Electron microscopy is now a powerful
tool in chemical research. What electron velocity is needed to produce
electrons with a wavelength of 4 × 10−3 nm, which is sufficient to produce an
image of an atom? If electromagnetic radiation were used, what region of the
electromagnetic spectrum would this correspond to?

5. Microwave ovens operate by emitting microwave radiation, which is primarily
absorbed by water molecules in food. The absorbed radiation is converted to
heat through rapid oscillations of polar water molecules, which cooks the food
and warms beverages. If 7.2 × 1028 photons are needed to heat 150.0 g of water
from 20.0°C to 100.0°C in a microwave oven, what is the frequency of the
microwaves? Metal objects should not be placed in a microwave oven because
they cause sparks. Why does this cause sparks?
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6. The magnitude of the energy gap between an excited state and a ground state
determines the color of visible light that is absorbed. The observed color of an
object is not the color of the light it absorbs but rather the complement of that
color. The accompanying rosette, first developed by Isaac Newton, shows the
colors increasing in energy from red to violet. Any two colors that are opposite
each other are said to be complementary (e.g., red and green are
complementary).

a. Given the absorption spectra and following table, what are the colors of
the objects that produce spectra A, B, and C?

Wavelength (nm) Color of Light

390–453 violet

453–492 blue

492–577 green

577–597 yellow

597–622 orange

622–780 red

b. The decomposition of a pigment depends on many factors, but the rate of
decomposition often depends on the energy of the radiation absorbed by
the pigment. Which of these compounds—A, B, or C—will likely fade
fastest?
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c. A painter has a sample of yellow paint. What would you expect the
absorption spectrum of the paint to look like? What would the absorption
spectrum look like if the paint had been contaminated with traces of a
violet pigment?

7. Photodegradation of atmospheric ozone occurs via the reaction O3 + hν →
O2 + O; the maximum absorption occurs at approximately 255 nm. In what
region of the electromagnetic spectrum does this occur? Based on this
information, what would be the effect of depleting the ozone layer of Earth’s
atmosphere?

8. A microscope’s resolution (its ability to distinguish between two points
separated by a given distance) depends on the wavelength of light used to
illuminate an object. The resolution R is given by the equation R = λ/2N, where
N is a constant related to the aperture. If a microscope has an aperture
constant of 0.25, what is the smallest distance between two objects that can be
resolved using the following light sources?

a. red light (E = 171 kJ/mol)
b. ultraviolet light (E = 1.20 × 103 kJ/mol)
c. x-rays (E = 1.20 × 105 kJ/mol)

9. Silver bromide is the photosensitive material in 35 mm photographic film.
When monochromatic light falls on film, the photons are recorded if they
contain sufficient energy to react with silver bromide in the film. Given that
the minimum energy needed to do this is approximately 57.9 kJ/mol, explain
why red light is used to light a darkroom. What happens when the door to the
darkroom is opened, allowing yellow light to enter?

10. A lighting system has recently been developed that uses a quartz bulb the size
of a golf ball filled with an inert gas and a small amount of sulfur. When
irradiated by microwaves, the bulb puts out as much light as hundreds of high-
intensity mercury vapor lamps. Because 1000 kJ/mol is needed to ionize sulfur,
can this process occur simply by irradiating sulfur atoms with microwaves?
Explain your answer.

11. The following table lists the ionization energies of some common atmospheric
species:

Species Ionization Energy (kJ/mol)

NO 897

CO2 1330

O2 1170
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a. Can radiant energy corresponding to the lowest energy line in the Lyman
series be used to ionize these molecules?

b. According to the table, can radiation of this energy be transmitted through
an oxygen atmosphere?

12. An artist used a pigment that has a significant absorption peak at 450 nm, with
a trace absorption at 530 nm. Based on the color chart and table in Problem 6,
what was the color of the paint? Draw the absorption pattern. What would the
absorption spectrum have looked like if the artist had wanted green? Using
absorption spectra, explain why an equal combination of red and yellow paints
produces orange.

13. You live in a universe where an electron has four different spins (ms = +½, +¼,
−½, −¼) and the periodic table has only 36 elements. Which elements would be
noble gases? What would the periodic table look like? (Assume that the Pauli
exclusion principle is still valid.)

14. If you were living on a planet where there were three quantum numbers (n, l,
m) instead of four, what would be the allowed combinations for an electron in
a 3p orbital? How many electrons would this orbital contain assuming the Pauli
exclusion principle were still in effect? How does this compare with the actual
number of allowed combinations found on Earth?

15. X-rays are frequently used to project images of the human body. Recently,
however, a superior technique called magnetic resonance imaging (MRI) has
been developed that uses proton spin to image tissues in spectacular detail. In
MRI, spinning hydrogen nuclei in an organic material are irradiated with
photons that contain enough energy to flip the protons to the opposite
orientation. If 33.121 kJ/mol of energy is needed to flip a proton, what is the
resonance frequency required to produce an MRI spectrum? Suggest why this
frequency of electromagnetic radiation would be preferred over x-rays.

16. Vanadium has been found to be a key component in a biological catalyst that
reduces nitrogen to ammonia. What is the valence electron configuration of
vanadium? What are the quantum numbers for each valence electron? How
many unpaired electrons does vanadium have?

17. Tellurium, a metal used in semiconductor devices, is also used as a coloring
agent in porcelains and enamels. Illustrate the aufbau principle, the Pauli
exclusion principle, and Hund’s rule using tellurium metal.

18. A new element is believed to have been discovered by a team of Russian and
American scientists, although its existence is yet to be independently
confirmed. Six atoms of element 117, temporarily named ununseptium, were
created by smashing together isotopes of calcium with the element berkelium.
Give the following:
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a. the complete electron configuration of this element
b. the valence electron configuration
c. the number of unpaired electrons in the valence shell
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