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Chapter 2

Risk Measurement and Metrics

In Chapter 1 "The Nature of Risk: Losses and Opportunities", we discussed how risk
arises as a consequence of uncertainty. Recall also that risk is not the state of
uncertainty itself. Risk and uncertainty are connected and yet are distinct concepts.

In this chapter, we will discuss the ways in which we measure risk and uncertainty.
If we wish to understand and use the concepts of risk and uncertainty, we need to
be able to measure these concepts’ outcomes. Psychological and economic research
shows that emotions such as fear, dread, ambiguity avoidance, and feelings of
emotional loss represent valid risks. Such feelings are thus relevant to decision
making under uncertainty. Our focus here, however, will draw more on financial
metrics rather than emotional or psychological measures of risk perception. In this
chapter, we thus discuss measurable and quantifiable outcomes and how we can
measure risk and uncertainty using numerical methods.

A “metric” in this context is a system of related measures that helps us quantify
characteristics or qualities. Any individual or enterprise needs to be able to
quantify risk before they can decide whether or not a particular risk is critical
enough to commit resources to manage. If such resources have been committed,
then we need measurements to see whether the risk management process or
procedure has reduced risk. And all forms of enterprises, for financial profit or for
social profit, must strive to reduce risk. Without risk metrics, enterprises cannot
tell whether or not they have reached risk management objectives. Enterprises
including businesses hold risk management to be as important as any other
objective, including profitability. Without risk metrics to measure success, failure,
or incremental improvement, we cannot judge progress in the control of risk.

Risk management provides a framework for assessing opportunities for profit, as
well as for gauging threats of loss. Without measuring risk, we cannot ascertain
what action of the available alternatives the enterprise should take to optimize the
risk-reward tradeoff. The risk-reward tradeoff is essentially a cost-benefit analysis
taking uncertainty into account. In (economic) marginal analysis terms, we want to
know how many additional units of risk we need to take on in order to get an
additional unit of reward or profit. A firm, for example, wants to know how much
capital it needs to keep from going insolvent if a bad risk is realized.This is
particularly true in firms like insurance companies and banks where the business
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opportunity they pursue is mainly based on taking calculated and judgment-based
risks. Indeed, if they cannot measure risk, enterprises are stuck in the ancient
world of being helpless to act in the face of uncertainty. Risk metrics allow us to
measure risk, giving us an ability to control risk and simultaneously exploit
opportunities as they arise. No one profits from establishing the existence of an
uncertain state of nature. Instead, managers must measure and assess their
enterprise’s degree of vulnerability (risk) and sensitivity to the various potential
states of nature. After reading this chapter, you should be able to define several
different risk metrics and be able to discuss when each metric is appropriate for a
given situation.

We will discuss several risk measures here, each of which comes about from the
progression of mathematical approaches to describing and evaluating risk. We
emphasize from the start, however, that measuring risk using these risk metrics is
only one step as we assess any opportunity-risk issue. Risk metrics cannot stand
alone. We must also evaluate how appropriate each underlying model might be for
the occasion. Further, we need to evaluate each question in terms of the risk level
that each entity is willing to assume for the gain each hopes to receive. Firms must
understand the assumptions behind worst-case or ruin scenarios, since most firms
do not want to take on risks that “bet the house.” To this end, knowing the severity
of losses that might be expected in the future (severity is the dollar value per claim)
using forecasting models represents one aspect of quantifying risk. However,
financial decision making requires that we evaluate severity levels based upon what
an individual or a firm can comfortably endure (risk appetite). Further, we must
evaluate the frequency with which a particular outcome will occur. As with the
common English language usage of the term, frequency is the number of times the
event is expected to occur in a specified period of time. The 2008 financial crisis
provides an example: Poor risk management of the financial models used for
creating mortgage-backed securities and credit default derivatives contributed to a
worldwide crisis. The assessment of loss frequency, particularly managers’
assessment of the severity of losses, was grossly underestimated. We discuss risk
assessment using risk metrics in the pages that follow.

As we noted in Chapter 1 "The Nature of Risk: Losses and Opportunities", risk is a
concept encompassing perils, hazards, exposures, and perception (with a strong
emphasis on perception). It should come as no surprise that the metrics for
measuring risk are also quite varied. The aspect of risk being considered in a
particular situation dictates the risk measure used. If we are interested in default
risk (the risk that a contracting party will be unable to live up to the terms of some
financial contract, usually due to total ruin or bankruptcy), then one risk measure
might be employed. If, on the other hand, we are interested in expected
fluctuations of retained earnings for paying future losses, then we would likely use
another risk measure. If we wish to know how much risk is generated by a risky
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undertaking that cannot be diversified away in the marketplace, then we would use
yet another risk measure. Each risk measure has its place and appropriate
application. One part of the art of risk management is to pick the appropriate risk
measure for each situation.

In this chapter, we will cover the following:

1. Links
2. Quantification of uncertain outcomes via probability models
3. Measures of risk: putting it together

Links

The first step in developing any framework for the measuring risk quantitatively
involves creating a framework for addressing and studying uncertainty itself. Such
a framework lies within the realm of probability. Since risk arises from uncertainty,
measures of risk must also take uncertainty into account. The process of
quantifying uncertainty, also known as probability theory, actually proved to be
surprisingly difficult and took millennia to develop. Progress on this front required
that we develop two fundamental ideas. The first is a way to quantify uncertainty
(probability) of potential states of the world. Second, we had to develop the notion
that the outcomes of interest to human events, the risks, were subject to some kind
of regularity that we could predict and that would remain stable over time.
Developing and accepting these two notions represented path-breaking, seminal
changes from previous mindsets. Until research teams made and accepted these
steps, any firm, scientific foundation for developing probability and risk was
impossible.

Solving risk problems requires that we compile a puzzle of the many personal and
business risks. First, we need to obtain quantitative measures of each risk. Again, as
in Chapter 1 "The Nature of Risk: Losses and Opportunities", we repeat the Link
puzzle in Figure 2.1 "Links between Each Holistic Risk Puzzle Piece and Its
Computational Measures". The point illustrated in Figure 2.1 "Links between Each
Holistic Risk Puzzle Piece and Its Computational Measures" is that we face many
varied risk exposures, appropriate risk measures, and statistical techniques that we
apply for different risks. However, most risks are interconnected. When taken
together, they provide a holistic risk measure for the firm or a family. For some
risks, measures are not sophisticated and easy to achieve, such as the risk of
potential fires in a region. Sometimes trying to predict potential risks is much more
complex, such as predicting one-hundred-year floods in various regions. For each
type of peril and hazard, we may well have different techniques to measure the
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risks. Our need to realize that catastrophes can happen and our need to account for
them are of paramount importance. The 2008–2009 financial crisis may well have
occurred in part because the risk measures in use failed to account for the systemic
collapses of the financial institutions. Mostly, institutions toppled because of a
result of the mortgage-backed securities and the real estate markets. As we explore
risk computations and measures throughout this chapter, you will learn
terminology and understand how we use such measures. You will thus embark on a
journey into the world of risk management. Some measures may seem simplistic.
Other measures will show you how to use complex models that use the most
sophisticated state-of-the-art mathematical and statistical technology. You’ll notice
also that many computations would be impossible without the advent of powerful
computers and computation memory. Now, on to the journey.

Figure 2.1 Links between Each Holistic Risk Puzzle Piece and Its Computational Measures
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2.1 Quantification of Uncertainty via Probability Models

LEARNING OBJECTIVES

• In this section, you will learn how to quantify the relative frequency of
occurrences of uncertain events by using probability models.

• You will learn about the measures of frequency, severity, likelihood,
statistical distributions, and expected values.

• You will use examples to compute these values.

As we consider uncertainty, we use rigorous quantitative studies of chance, the
recognition of its empirical regularity in uncertain situations. Many of these
methods are used to quantify the occurrence of uncertain events that represent
intellectual milestones. As we create models based upon probability and statistics,
you will likely recognize that probability and statistics touch nearly every field of
study today. As we have internalized the predictive regularity of repeated chance
events, our entire worldview has changed. For example, we have convinced
ourselves of the odds of getting heads in a coin flip so much that it’s hard to
imagine otherwise. We’re used to seeing statements such as “average life of 1,000
hours” on a package of light bulbs. We understand such a phrase because we can
think of the length of life of a light bulb as being uncertain but statistically
predictable. We routinely hear such statements as “The chance of rain tomorrow is
20 percent.” It’s hard for us to imagine that only a few centuries ago people did not
believe even in the existence of chance occurrences or random events or in
accidents, much less explore any method of quantifying seemingly chance events.
Up until very recently, people have believed that God controlled every minute
detail of the universe. This belief rules out any kind of conceptualization of chance
as a regular or predictable phenomenon. For example, until recently the cost of
buying a life annuity that paid buyers $100 per month for life was the same for a
thirty-year-old as it was for a seventy-year-old. It didn’t matter that empirically,
the “life expectancy” of a thirty-year-old was four times longer than that of a
seventy-year-old.The government of William III of England, for example, offered
annuities of 14 percent regardless of whether the annuitant was 30 or 70 percent;
(Karl Pearson, The History of Statistics In the 17th and 18th Centuries against the Changing
Background of Intellectual, Scientific and Religious Thought (London: Charles Griffin &
Co., 1978), 134. After all, people believed that a person’s particular time of death
was “God’s will.” No one believed that the length of someone’s life could be judged
or predicted statistically by any noticed or exhibited regularity across people. In
spite of the advancements in mathematics and science since the beginning of
civilization, remarkably, the development of measures of relative frequency of

Chapter 2 Risk Measurement and Metrics

54



occurrence of uncertain events did not occur until the 1600s. This birth of the
“modern” ideas of chance occurred when a problem was posed to mathematician
Blaisé Pascal by a frequent gambler. As often occurs, the problem turned out to be
less important in the long run than the solution developed to solve the problem.

The problem posed was: If two people are gambling and the game is interrupted and
discontinued before either one of the two has won, what is a fair way to split the pot
of money on the table? Clearly the person ahead at that time had a better chance of
winning the game and should have gotten more. The player in the lead would
receive the larger portion of the pot of money. However, the person losing could
come from behind and win. It could happen and such a possibility should not be
excluded. How should the pot be split fairly? Pascal formulated an approach to this
problem and, in a series of letters with Pierre de Fermat, developed an approach to
the problem that entailed writing down all possible outcomes that could possibly
occur and then counting the number of times the first gambler won. The proportion
of times that the first gambler won (calculated as the number of times the gambler
won divided by the total number of possible outcomes) was taken to be the
proportion of the pot that the first gambler could fairly claim. In the process of
formulating this solution, Pascal and Fermat more generally developed a
framework to quantify the relative frequency of uncertain outcomes, which is now
known as probability. They created the mathematical notion of expected value of an
uncertain event. They were the first to model the exhibited regularity of chance or
uncertain events and apply it to solve a practical problem. In fact, their solution
pointed to many other potential applications to problems in law, economics, and
other fields.

From Pascal and Fermat’s work, it became clear that to manage future risks under
uncertainty, we need to have some idea about not only the possible outcomes or
states of the world but also how likely each outcome is to occur. We need a model1,
or in other words, a symbolic representation of the possible outcomes and their
likelihoods or relative frequencies.

1. A symbolic representation of
the possible outcomes.
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A Historical Prelude to the Quantification of Uncertainty
Via Probabilities

Historically, the development of measures of chance (probability) only began in
the mid-1600s. Why in the middle ages, and not with the Greeks? The answer, in
part, is that the Greeks and their predecessors did not have the mathematical
concepts. Nor, more importantly, did the Greeks have the psychological
perspective to even contemplate these notions, much less develop them into a
cogent theory capable of reproduction and expansion. First, the Greeks did not
have the mathematical notational system necessary to contemplate a formal
approach to risk. They lacked, for example, the simple and complete symbolic
system including a zero and an equal sign useful for computation, a
contribution that was subsequently developed by the Arabs and later adopted
by the Western world. The use of Roman numerals might have been sufficient
for counting, and perhaps sufficient for geometry, but certainly it was not
conducive to complex calculations. The equal sign was not in common use until
the late middle ages. Imagine doing calculations (even such simple
computations as dividing fractions or solving an equation) in Roman numerals
without an equal sign, a zero element, or a decimal point!

But mathematicians and scientists settled these impediments a thousand years
before the advent of probability. Why did risk analysis not emerge with the
advent of a more complete numbering system just as sophisticated calculations
in astronomy, engineering, and physics did? The answer is more psychological
than mathematical and goes to the heart of why we consider risk as both a
psychological and a numerical concept in this book. To the Greeks (and to the
millennia of others who followed them), the heavens, divinely created, were
believed to be static and perfect and governed by regularity and rules of
perfection—circles, spheres, the six perfect geometric solids, and so forth. The
earthly sphere, on the other hand, was the source of imperfection and chaos.
The Greeks accepted that they would find no sense in studying the chaotic
events of Earth. The ancient Greeks found the path to truth in contemplating
the perfection of the heavens and other perfect unspoiled or uncorrupted
entities. Why would a god (or gods) powerful enough to know and create
everything intentionally create a world using a less than perfect model? The
Greeks, and others who followed, believed pure reasoning, not empirical,
observation would lead to knowledge. Studying regularity in the chaotic
earthly sphere was worst than a futile waste of time; it distracted attention
from important contemplations actually likely to impart true knowledge.
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It took a radical change in mindset to start to contemplate regularity in events
in the earthly domain. We are all creatures of our age, and we could not pose
the necessary questions to develop a theory of probability and risk until we
shook off these shackles of the mind. Until the age of reason, when church
reforms and a growing merchant class (who pragmatically examined and
counted things empirically) created a tremendous growth in trade, we
remained trapped in the old ways of thinking. As long as society was static and
stationary, with villages this year being essentially the same as they were last
year or a decade or century before, there was little need to pose or solve these
problems. M. G. Kendall captures this succinctly when he noted that
“mathematics never leads thought, but only expresses it.”* The western world
was simply not yet ready to try to quantify risk or event likelihood (probability)
or to contemplate uncertainty. If all things are believed to be governed by an
omnipotent god, then regularity is not to be trusted, perhaps it can even be
considered deceptive, and variation is irrelevant and illusive, being merely
reflective of God’s will. Moreover, the fact that things like dice and drawing of
lots were simultaneously used by magicians, by gamblers, and by religious
figures for divination did not provide any impetus toward looking for
regularity in earthly endeavors.

* M. G. Kendall, “The Beginnings of a Probability Calculus,” in Studies in the
History of Statistics and Probability, vol. 1, ed. E. S. Pearson and Sir Maurice
Kendall (London: Charles Griffin & Co., 1970), 30.

Measurement Techniques for Frequency, Severity, and
Probability Distribution Measures for Quantifying Uncertain
Events

When we can see the pattern of the losses and/or gains experienced in the past, we
hope that the same pattern will continue in the future. In some cases, we want to be
able to modify the past results in a logical way like inflating them for the time value
of money discussed in Chapter 4 "Evolving Risk Management: Fundamental Tools".
If the patterns of gains and losses continue, our predictions of future losses or gains
will be informative. Similarly, we may develop a pattern of losses based on
theoretical or physical constructs (such as hurricane forecasting models based on
physics or likelihood of obtaining a head in a flip of a coin based on theoretical
models of equal likelihood2 of a head and a tail). Likelihood is the notion of how
often a certain event will occur. Inaccuracies in our abilities to create a correct
distribution3 arise from our inability to predict futures outcomes accurately. The
distribution is the display of the events on a map that tells us the likelihood that the

2. The probability that an event
will occur in a specified
amount of time.

3. The display of the events on a
map that tells us the likelihood
that the event or events will
occur.
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event or events will occur. In some ways, it resembles a picture of the likelihood
and regularity of events that occur. Let’s now turn to creating models and measures
of the outcomes and their frequency.

Measures of Frequency and Severity

Table 2.1 "Claims and Fire Losses for Group of Homes in Location A" and Table 2.2
"Claims and Fire Losses ($) for Homes in Location B" show the compilation of the
number of claims and their dollar amounts for homes that were burnt during a five-
year period in two different locations labeled Location A and Location B. We have
information about the total number of claims per year and the amount of the fire
losses in dollars for each year. Each location has the same number of homes (1,000
homes). Each location has a total of 51 claims for the five-year period, an average
(or mean) of 10.2 claims per year, which is the frequency. The average dollar
amount of losses per claim for the whole period is also the same for each location,
$6,166.67, which is the definition of severity.

Table 2.1 Claims and Fire Losses for Group of Homes in Location A

Year
Number of Fire

Claims
Number of Fire Losses ($)

Average Loss per Claim
($)

1 11 16,500.00 1,500.00

2 9 40,000.00 4,444.44

3 7 30,000.00 4,285.71

4 10 123,000.00 12,300.00

5 14 105,000.00 7,500.00

Total 51.00 314,500.00 6,166.67

Mean 10.20 62,900.00 6,166.67

Average Frequency = 10.20

Average Severity =
6,166.67 for the 5-year

period

Table 2.2 Claims and Fire Losses ($) for Homes in Location B

Year
Number of Fire

Claims
Fire Losses

Average Loss per Claim
($)

1 15 16,500.00 1,100.00
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Year
Number of Fire

Claims
Fire Losses

Average Loss per Claim
($)

2 5 40,000.00 8,000.00

3 12 30,000.00 2,500.00

4 10 123,000.00 12,300.00

5 9 105,000.00 11,666.67

Total 51.00 314,500.00 6,166.67

Mean 10.20 62,900.00 6,166.67

Average frequency = 10.20

Average severity =
6,166.67 for the 5-year

period

As shown in Table 2.1 "Claims and Fire Losses for Group of Homes in Location A"
and Table 2.2 "Claims and Fire Losses ($) for Homes in Location B", the total number
of fire claims for the two locations A and B is the same, as is the total dollar amount
of losses shown. You might recall from earlier, the number of claims per year is
called the frequency. The average frequency of claims for locations A and B is 10.2
per year. The size of the loss in terms of dollars lost per claim is called severity, as
we noted previously. The average dollars lost per claim per year in each location is
$6,166.67.

The most important measures for risk managers when they address potential losses
that arise from uncertainty are usually those associated with frequency and
severity of losses during a specified period of time. The use of frequency and
severity data is very important to both insurers and firm managers concerned with
judging the risk of various endeavors. Risk managers try to employ activities
(physical construction, backup systems, financial hedging, insurance, etc.) to
decrease the frequency or severity (or both) of potential losses. In Chapter 4
"Evolving Risk Management: Fundamental Tools", we will see frequency data and
severity data represented. Typically, the risk manager will relate the number of
incidents under investigation to a base, such as the number of employees if
examining the frequency and severity of workplace injuries. In the examples in
Table 2.1 "Claims and Fire Losses for Group of Homes in Location A" and Table 2.2
"Claims and Fire Losses ($) for Homes in Location B", the severity is related to the
number of fire claims in the five-year period per 1,000 homes. It is important to
note that in these tables the precise distribution (frequencies and dollar losses) over
the years for the claims per year arising in Location A is different from distribution
for Location B. This will be discussed later in this chapter. Next, we discuss the
concept of frequency in terms of probability or likelihood.
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Frequency and Probability

Returning back to the quantification of the notion of uncertainty, we first observe
that our intuitive usage of the word probability can have two different meanings or
forms as related to statements of uncertain outcomes. This is exemplified by two
different statements:See Patrick Brockett and Arnold Levine Brockett, Statistics,
Probability and Their Applications (W. B. Saunders Publishing Co., 1984), 62.

1. “If I sail west from Europe, I have a 50 percent chance that I will fall off
the edge of the earth.”

2. “If I flip a coin, I have a 50 percent chance that it will land on heads.”

Conceptually, these represent two distinct types of probability statements. The first
is a statement about probability as a degree of belief about whether an event will
occur and how firmly this belief is held. The second is a statement about how often
a head would be expected to show up in repeated flips of a coin. The important
difference is that the first statement’s validity or truth will be stated. We can clear
up the statement’s veracity for all by sailing across the globe.

The second statement, however, still remains unsettled. Even after the first coin
flip, we still have a 50 percent chance that the next flip will result in a head. The
second provides a different interpretation of “probability,” namely, as a relative
frequency of occurrence in repeated trials. This relative frequency
conceptualization of probability is most relevant for risk management. One wants
to learn from past events about the likelihood of future occurrences. The
discoverers of probability theory adopted the relative frequency approach to
formalizing the likelihood of chance events.

Pascal and Fermat ushered in a major conceptual breakthrough: the concept that, in
repeated games of chance (or in many other situations encountered in nature)
involving uncertainty, fixed relative frequencies of occurrence of the individual
possible outcomes arose. These relative frequencies were both stable over time and
individuals could calculate them by simply counting the number of ways that the
outcome could occur divided by the total number of equally likely possible
outcomes. In addition, empirically the relative frequency of occurrence of events in
a long sequence of repeated trials (e.g., repeated gambling games) corresponded
with the theoretical calculation of the number of ways an event could occur divided
by the total number of possible outcomes. This is the model of equally likely
outcomes or relative frequency definition of probability. It was a very distinct
departure from the previous conceptualization of uncertainty that had all events
controlled by God with no humanly discernable pattern. In the Pascal-Fermat
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framework, prediction became a matter of counting that could be done by anyone.
Probability and prediction had become a tool of the people! Figure 2.2 "Possible
Outcomes for a Roll of Two Dice with the Probability of Having a Particular Number
of Dots Facing Up" provides an example representing all possible outcomes in the
throw of two colored dice along with their associated probabilities.

Figure 2.2 Possible Outcomes for a Roll of Two Dice with the Probability of Having a Particular Number of Dots
Facing Up

Figure 2.2 "Possible Outcomes for a Roll of Two Dice with the Probability of Having a
Particular Number of Dots Facing Up" lists the probabilities for the number of dots
facing upward (2, 3, 4, etc.) in a roll of two colored dice. We can calculate the
probability for any one of these numbers (2, 3, 4, etc.) by adding up the number of
outcomes (rolls of two dice) that result in this number of dots facing up divided by
the total number of possibilities. For example, a roll of thirty-six possibilities total
when we roll two dice (count them). The probability of rolling a 2 is 1/36 (we can
only roll a 2 one way, namely, when both dice have a 1 facing up). The probability of
rolling a 7 is 6/36 = 1/6 (since rolls can fall any of six ways to roll a 7—1 and 6 twice,
2 and 5 twice, 3 and 4 twice). For any other choice of number of dots facing upward,
we can get the probability by just adding the number of ways the event can occur
divided by thirty-six. The probability of rolling a 7 or an 11 (5 and 6 twice) on a
throw of the dice, for instance, is (6 + 2)/36 = 2/9.
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The notions of “equally likely outcomes” and the calculation of probabilities as the
ratio of “the number of ways in which an event could occur, divided by the total
number of equally likely outcomes” is seminal and instructive. But, it did not
include situations in which the number of possible outcomes was (at least
conceptually) unbounded or infinite or not equally likely.Nor was the logic of the
notion of equally likely outcomes readily understood at the time. For example, the
famous mathematician D’Alembert made the following mistake when calculating
the probability of a head appearing in two flips of a coin (Karl Pearson, The History of
Statistics in the 17th and 18th Centuries against the Changing Background of Intellectual,
Scientific and Religious Thought [London: Charles Griffin & Co., 1978], 552). D’Alembert
said the head could come up on the first flip, which would settle that matter, or a
tail could come up on the first flip followed by either a head or a tail on the second
flip. There are three outcomes, two of which have a head, and so he claimed the
likelihood of getting a head in two flips is 2/3. Evidently, he did not take the time to
actually flip coins to see that the probability was 3/4, since the possible equally
likely outcomes are actually (H,T), (H,H), (T,H), (T,T) with three pairs of flips
resulting in a head. The error is that the outcomes stated in D’Alembert’s solution
are not equally likely using his outcomes H, (T,H), (T,T), so his denominator is
wrong. The moral of this story is that postulated theoretical models should always
be tested against empirical data whenever possible to uncover any possible errors.
We needed an extension. Noticing that the probability of an event, any event,
provided that extension. Further, extending the theory to nonequally likely
possible outcomes arose by noticing that the probability of an event—any
event—occurring could be calculated as the relative frequency of an event
occurring in a long run of trials in which the event may or may not occur. Thus,
different events could have different, nonequal chances of occurring in a long
repetition of scenarios involving the possible occurrences of the events. Table 2.3
"Opportunity and Loss Assessment Consequences of New Product Market Entry"
provides an example of this. We can extend the theory yet further to a situation in
which the number of possible outcomes is potentially infinite. But what about a
situation in which no easily definable bound on the number of possible outcomes
can be found? We can address this situation by again using the relative frequency
interpretation of probability as well. When we have a continuum of possible
outcomes (e.g., if an outcome is time, we can view it as a continuous variable
outcome), then a curve of relative frequency is created. Thus, the probability of an
outcome falling between two numbers x and y is the area under the frequency curve
between x and y. The total area under the curve is one reflecting that it’s 100
percent certain that some outcome will occur.

The so-called normal distribution or bell-shaped curve from statistics provides us
with an example of such a continuous probability distribution curve. The bell-
shaped curve represents a situation wherein a continuum of possible outcomes
arises. Figure 2.3 "Normal Distribution of Potential Profit from a Research and
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Development Project" provides such a bell-shaped curve for the profitability of
implementing a new research and development project. It may have profit or loss.

Figure 2.3 Normal Distribution of Potential Profit from a Research and Development Project

To find the probability of any range of profitability values for this research and
development project, we find the area under the curve in Figure 2.3 "Normal
Distribution of Potential Profit from a Research and Development Project" between
the desired range of profitability values. For example, the distribution in Figure 2.3
"Normal Distribution of Potential Profit from a Research and Development Project"
was constructed to have what is called a normal distribution with the hump over
the point $30 million and a measure of spread of $23 million. This spread represents
the standard deviation that we will discuss in the next section. We can calculate the
area under the curve above $0, which will be the probability that we will make a
profit by implementing the research and development project. We do this by
reference to a normal distribution table of values available in any statistics book.
The area under the curve is 0.904, meaning that we have approximately a 90
percent change (probability of 0.9) that the project will result in a profit.

In practice, we build probability distribution tables or probability curves such as
those in Figure 2.2 "Possible Outcomes for a Roll of Two Dice with the Probability of
Having a Particular Number of Dots Facing Up", Figure 2.3 "Normal Distribution of
Potential Profit from a Research and Development Project", and Table 2.3
"Opportunity and Loss Assessment Consequences of New Product Market Entry"
using estimates of the likelihood (probability) of various different states of nature
based on either historical relative frequency of occurrence or theoretical data. For
example, empirical data may come from repeated observations in similar situations
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such as with historically constructed life or mortality tables. Theoretical data may
come from a physics or engineering assessment of failure likelihood for a bridge or
nuclear power plant containment vessel. In some situations, however, we can
determine the likelihoods subjectively or by expert opinion. For example,
assessments of political overthrows of governments are used for pricing political
risk insurance needed by corporations doing business in emerging markets.
Regardless of the source of the likelihoods, we can obtain an assessment of the
probabilities or relative frequencies of the future occurrence of each conceivable
event. The resulting collection of possible events together with their respective
probabilities of occurrence is called a probability distribution, an example of which
is shown in Table 2.3 "Opportunity and Loss Assessment Consequences of New
Product Market Entry".

Measures of Outcome Value: Severity of Loss, Value of Gain

We have developed a quantified measure of the likelihood of the various uncertain
outcomes that a firm or individual might face—these are also called probabilities.
We can now turn to address the consequences of the uncertainty. The consequences
of uncertainty are most often a vital issue financially. The reason that uncertainty is
unsettling is not the uncertainty itself but rather the various different outcomes
that can impact strategic plans, profitability, quality of life, and other important
aspects of our life or the viability of a company. Therefore, we need to assess how
we are impacted in each state of the world. For each outcome, we associate a value
reflecting how we are affected by being in this state of the world.

As an example, consider a retail firm entering a new market with a newly created
product. They may make a lot of money by taking advantage of “first-mover”
status. They may lose money if the product is not accepted sufficiently by the
marketplace. In addition, although they have tried to anticipate any problems, they
may be faced with potential product liability. While they naturally try to make their
products as safe as possible, they have to regard the potential liability because of
the limited experience with the product. They may be able to assess the likelihood
of a lawsuit as well as the consequences (losses) that might result from having to
defend such lawsuits. The uncertainty of the consequences makes this endeavor
risky and the potential for gain that motivates the company’s entry into the new
market. How does one calculate these gains and losses? We already demonstrated
some calculations in the examples above in Table 2.1 "Claims and Fire Losses for
Group of Homes in Location A" and Table 2.2 "Claims and Fire Losses ($) for Homes
in Location B" for the claims and fire losses for homes in locations A and B. These
examples concentrated on the consequences of the uncertainty about fires. Another
way to compute the same type of consequences is provided in the example in Table
2.3 "Opportunity and Loss Assessment Consequences of New Product Market Entry"
for the probability distribution for this new market entry. We look for an
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assessment of the financial consequences of the entry into the market as well. This
example looks at a few possible outcomes, not only the fire losses outcome. These
outcomes can have positive or negative consequences. Therefore, we use the
opportunity terminology here rather than only the loss possibilities.

Table 2.3 Opportunity and Loss Assessment Consequences of New Product Market
Entry

State of Nature
Probability

Assessment of
Likelihood of State

Financial Consequences of Being
in This State (in Millions of

Dollars)

Subject to a loss in a
product liability lawsuit

.01 −10.2

Market acceptance is
limited and temporary

.10 −.50

Some market acceptance
but no great consumer
demand

.40 .10

Good market acceptance
and sales performance

.40 1

Great market demand and
sales performance

.09 8

As you can see, it’s not the uncertainty of the states themselves that causes decision
makers to ponder the advisability of market entry of a new product. It’s the
consequences of the different outcomes that cause deliberation. The firm could lose
$10.2 million or gain $8 million. If we knew which state would materialize, the
decision would be simple. We address the issue of how we combine the probability
assessment with the value of the gain or loss for the purpose of assessing the risk
(consequences of uncertainty) in the next section.

Combining Probability and Outcome Value Together to Get an Overall
Assessment of the Impact of an Uncertain Endeavor

Early probability developers asked how we could combine the various probabilities
and outcome values together to obtain a single number reflecting the “value” of the
multitude of different outcomes and different consequences of these outcomes.
They wanted a single number that summarized in some way the entire probability
distribution. In the context of the gambling games of the time when the outcomes
were the amount you won in each potential uncertain state of the world, they
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asserted that this value was the “fair value4” of the gamble. We define fair value as
the numerical average of the experience of all possible outcomes if you played the
game over and over. This is also called the “expected value.” Expected value is
calculated by multiplying each probability (or relative frequency) by its respective
gain or loss.In some ways it is a shame that the term “expected value” has been
used to describe this concept. A better term is “long run average value” or “mean
value” since this particular value is really not to be expected in any real sense and
may not even be a possibility to occur (e.g., the value calculated from Table 2.3
"Opportunity and Loss Assessment Consequences of New Product Market Entry" is
1.008, which is not even a possibility). Nevertheless, we are stuck with this
terminology, and it does convey some conception of what we mean as long as we
interpreted it as being the number expected as an average value in a long series of
repetitions of the scenario being evaluated. It is also referred to as the mean value,
or the average value. If X denotes the value that results in an uncertain situation,
then the expected value (or average value or mean value) is often denoted by E(X),
sometimes also referred to by economists as E(U)—expected utility—and
E(G)—expected gain. In the long run, the total experienced loss or gain divided by
the number of repeated trials would be the sum of the probabilities times the
experience in each state. In Table 2.3 "Opportunity and Loss Assessment
Consequences of New Product Market Entry" the expected value is (.01)×(–10.2) +
(.1) × ( −.50) + (.4) × (.1) + (.4) × (1) + (.09) × (8) = 1.008. Thus, we would say the
expected outcome of the uncertain situation described in Table 2.3 "Opportunity
and Loss Assessment Consequences of New Product Market Entry" was $1.008
million, or $1,008,000.00. Similarly, the expected value of the number of points on
the toss of a pair of dice calculated from example in Figure 2.2 "Possible Outcomes
for a Roll of Two Dice with the Probability of Having a Particular Number of Dots
Facing Up" is 2 × (1/36) + 3 × (2/36) + 4 × (3/36) + 5 × (4/36) + 6 × (5/36) + 7 × (6/36) + 8
× (5/36) + 9 × (4/36) + 10 × (3/36) + 11 × (2/36) + 12 × (1/36) = 7. In uncertain economic
situations involving possible financial gains or losses, the mean value or average
value or expected value is often used to express the expected returns.Other
commonly used measures of profitability in an uncertain opportunity, other than
the mean or expected value, are the mode (the most likely value) and the median
(the number with half the numbers above it and half the numbers below it—the 50
percent mark). It represents the expected return from an endeavor; however, it
does not express the risk involved in the uncertain scenario. We turn to this now.

Relating back to Table 2.1 "Claims and Fire Losses for Group of Homes in Location
A" and Table 2.2 "Claims and Fire Losses ($) for Homes in Location B", for locations
A and B of fire claim losses, the expected value of losses is the severity of fire
claims, $6,166.67, and the expected number of claims is the frequency of
occurrence, 10.2 claims per year.

4. The numerical average of the
experience of all possible
outcomes if you played a game
over and over.
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KEY TAKEAWAYS

In this section you learned about the quantification of uncertain outcomes
via probability models. More specifically, you delved into methods of
computing:

• Severity as a measure of the consequence of uncertainty—it is the
expected value or average value of the loss that arises in different states
of the world. Severity can be obtained by adding all the loss values in a
sample and dividing by the total sample size.

• If we take a table of probabilities (probability distribution), the expected
value is obtained by multiplying the probability of a particular loss
occurring times the size of the loss and summing over all possibilities.

• Frequency is the expected number of occurrences of the loss that arises
in different states of the world.

• Likelihood and probability distribution represent relative frequency of
occurrence (frequency of occurrence of the event divided by the total
frequency of all events) of different events in uncertain situations.
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DISCUSSION QUESTIONS

1. A study of data losses incurred by companies due to hackers
penetrating the Internet security of the firm found that 60
percent of the firms in the industry studied had experienced
security breaches and that the average loss per security breach
was $15,000.

a. What is the probability that a firm will not have a security
breach?

b. One firm had two breaches in one year and is contemplating
spending money to decrease the likelihood of a breach.
Assuming that the next year would be the same as this year
in terms of security breaches, how much should the firm be
willing to pay to eliminate security breaches (i.e., what is the
expected value of their loss)?

2. The following is the experience of Insurer A for the last three
years:

Year
Number of
Exposures

Number of Collision
Claims

Collision
Losses ($)

1 10,000 375 350,000

2 10,000 330 250,000

3 10,000 420 400,000

a. What is the frequency of losses in year 1?
b. Calculate the probability of a loss in year 1.
c. Calculate the mean losses per year for the collision claims

and losses.
d. Calculate the mean losses per exposure.
e. Calculate the mean losses per claim.
f. What is the frequency of the losses?
g. What is the severity of the losses?

3. The following is the experience of Insurer B for the last three
years:
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Year
Number of
Exposures

Number of Collision
Claims

Collision
Losses ($)

1 20,000 975 650,000

2 20,000 730 850,000

3 20,000 820 900,000

a. Calculate the mean or average number of claims per year for
the insurer over the three-year period.

b. Calculate the mean or average dollar value of collision losses
per exposure for year 2.

c. Calculate the expected value (mean or average) of losses per
claim over the three-year period.

d. For each of the three years, calculate the probability that an
exposure unit will file a claim.

e. What is the average frequency of losses?
f. What is the average severity of the losses?
g. What is the standard deviation of the losses?
h. Calculate the coefficient of variation.
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2.2 Measures of Risk: Putting It Together

LEARNING OBJECTIVE

• In this section, you will learn how to compute several common measures
of risk using various methods and statistical concepts.

Having developed the concept of probability to quantify the relative likelihood of
an uncertain event, and having developed a measure of “expected value” for an
uncertain event, we are now ready to try to quantify risk itself. The “expected
value” (or mean value or fair value) quantifying the potential outcome arising from
an uncertain scenario or situation in which probabilities have been assigned is a
common input into the decision-making process concerning the advisability of
taking certain actions, but it is not the only consideration. The financial return
outcomes of various uncertain research and development, might, for example, be
almost identical except that the return distributions are sort of shifted in one
direction or the other. Such a situation is shown in Figure 2.4 "Possible Profitability
from Three Potential Research and Development Projects". This figure describes the
(continuous) distributions of anticipated profitability for each of three possible
capital expenditures on uncertain research and development projects. These are
labeled A, B, and C, respectively.
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Figure 2.4 Possible Profitability from Three Potential Research and Development Projects

Intuitively, in economic terms a risk is a “surprise” outcome that is a consequence
of uncertainty. It can be a positive surprise or a negative surprise, as we discussed
in Chapter 1 "The Nature of Risk: Losses and Opportunities".

Using the terms explained in the last section, we can regard risk as the deviation
from the expected value. The more an observation deviates from what we expected,
the more surprised we are likely to become if we should see it, and hence the more
risky (in an economic sense) we deem the outcome to be. Intuitively, the more
surprise we “expect” from a venture or a scenario, the riskier we judge this venture
or scenario to be.

Looking back on Figure 2.4 "Possible Profitability from Three Potential Research
and Development Projects", we might say that all three curves actually represent
the same level of risk in that they each differ from their expected value (the mean
or hump of the distribution) in identical ways. They only differ in their respective
expected level of profitability (the hump in the curve). Note that the uncertain
scenarios “B” and “C” still describe risky situations, even though virtually all of the
possible outcomes of these uncertain scenarios are in the positive profit range. The
“risk” resides in the deviations from the expected value that might result (the
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surprise potential), whether on the average the result is negative or positive. Look
at the distribution labeled “A,” which describes a scenario or opportunity/loss
description where much more of the possible results are on the negative range
(damages or losses). Economists don’t consider “A” to be any more risky (or more
dangerous) than “B” or “C,” but simply less profitable. The deviation from any
expected risk defines risk here. We can plan for negative as well as positive
outcomes if we know what to expect. A certain negative value may be unfortunate,
but it is not risky.

Some other uncertain situations or scenarios will have the same expected level of
“profitability,” but will differ in the amount of “surprise” they might present. For
example, let’s assume that we have three potential corporate project investment
opportunities. We expect that, over a decade, the average profitability in each
opportunity will amount to $30 million. The projects differ, however, by the level of
uncertainty involved in this profitability assessment (see Figure 2.5 "Three
Corporate Opportunities Having the Same Expected Profitability but Differing in
Risk or Surprise Potential"). In Opportunity A, the possible range of profitability is
$5–$60 million, whereas Opportunity B has a larger range of possible profits,
between –$20 million and + $90 million. The third opportunity still has an expected
return of $30 million, but now the range of values is from –$40 million to +$100. You
could make more from Opportunity C, but you could lose more, as well. The
deviation of the results around the expected value can measure the level of
“surprise” potential the uncertain situation or profit/loss scenario contains. The
uncertain situation concerning the profitability in Opportunity B contains a larger
potential surprise in it than A, since we might get a larger deviation from the
expected value in B than in A. That’s why we consider Opportunity B more risky
than A. Opportunity C is the riskiest of all, having the possibility of a giant $100
million return, with the downside potential of creating a $40 million loss.
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Figure 2.5 Three Corporate Opportunities Having the Same Expected Profitability but Differing in Risk or
Surprise Potential

Our discussion above is based upon intuition rather than mathematics. To make it
specific, we need to actually define quantitatively what we mean by the terms “a
surprise” and “more surprised.” To this end, we must focus on the objective of the
analysis. A sequence of throws of a pair of colored dice in which the red die always
lands to the left of the green die may be surprising, but this surprise is irrelevant if
the purpose of the dice throw is to play a game in which the number of dots facing
up determines the pay off. We thus recognize that we must define risk in a context
of the goal of the endeavor or study. If we are most concerned about the risk of
insolvency, we may use one risk measure, while if we are interested in susceptibility
of portfolio of assets to moderate interest rate changes, we may use another
measure of risk. Context is everything. Let’s discuss several risk measures that are
appropriate in different situations.

Some Common Measures of Risk

As we mentioned previously, intuitively, a risk measure should reflect the level of
“surprise” potential intrinsic in the various outcomes of an uncertain situation or
scenario. To this end, the literature proposes a variety of statistical measures for
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risk levels. All of these measures attempt to express the result variability for each
relevant outcome in the uncertain situation. The following are some risk measures.

The Range

We can use the range5 of the distribution—that is, the distance between the highest
possible outcome value to the lowest—as a rough risk measure. The range provides
an idea about the “worst-case” dispersion of successive surprises. By taking the
“best-case scenario minus the worst-case scenario” we define the potential breadth
of outcomes that could arise in the uncertain situation.

As an example, consider the number of claims per year in Location A of Table 2.1
"Claims and Fire Losses for Group of Homes in Location A". Table 2.1 "Claims and
Fire Losses for Group of Homes in Location A" shows a low of seven claims per year
to a high of fourteen claims per year, for a range of seven claims per year. For
Location B of Table 2.2 "Claims and Fire Losses ($) for Homes in Location B", we
have a range in the number of claims from a low of five in one year to a high of
fifteen claims per year, which gives us a range of ten claims per year. Using the
range measure of risk, we would say that Location A is less risky than Location B in
this situation, especially since the average claim is the same (10.2) in each case and
we have more variability or surprise potential in Location B. As another example, if
we go back to the distribution of possible values in Table 2.3 "Opportunity and Loss
Assessment Consequences of New Product Market Entry", the extremes vary from
−$10.2 million to +$8 million, so the range is $18.2 million.

This risk measure leaves the picture incomplete because it cannot distinguish in
riskiness between two distributions of situations where the possible outcomes are
unbounded, nor does it take into account the frequency or probability of the
extreme values. The lower value of –$10.2 million in Table 2.3 "Opportunity and
Loss Assessment Consequences of New Product Market Entry" only occurs 1 percent
of the time, so it’s highly unlikely that you would get a value this small. It could
have had an extreme value of –$100 million, which occurred with probability
0.0000000001, in which case the range would have reflected this possibility. Note
that it’s extremely unlikely that you would ever experience a one-in-a-trillion
event. Usually you would not want your risk management activities or managerial
actions to be dictated by a one-in-a-trillion event.

Deviation from a Central Value

A more sophisticated (and more traditional) way to measure risk would consider
not just the most extreme values of the distribution but all values and their
respective occurrence probabilities. One way to do this is to average the deviations

5. The distance between the
highest possible outcome value
to the lowest in a distribution.
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of the possible values of the distribution from a central value, such as the expected
value E(V) or mean value discussed earlier. We develop this idea further below.

Variance and Standard Deviation

Continuing the example from Table 2.1 "Claims and Fire Losses for Group of Homes
in Location A" and Table 2.2 "Claims and Fire Losses ($) for Homes in Location B",
we now ask what differentiates the claims distribution of Location A and B, both of
which possess the same expected frequency and severity. We have already seen that
the range is different. We now examine how the two locations differ in terms of
their deviation from the common mean or expected value. Essentially, we want to
examine how they differ in terms of the amount of surprise we expect to see in
observations form the distributions. One such measure of deviation or surprise is by
calculating the expected squared distance of each of the various outcomes from
their mean value. This is a weighted average squared distance of each possible value
from the mean of all observations, where the weights are the probabilities of
occurrence. Computationally, we do this by individually squaring the deviation of
each possible outcome from the expected value, multiplying this result by its
respective probability or likelihood of occurring, and then summing up the
resulting products.Calculating the average signed deviation from the mean or
expected value since is a useless exercise since the result will always be zero. Taking
the square of each deviation for the mean or expected value gets rid of the algebraic
sign and makes the sum positive and meaningful. One might alternatively take the
absolute value of the deviations from the mean to obtain another measure called
the absolute deviation, but this is usually not done because it results in a
mathematically inconvenient formulation. We shall stick to the squared deviation
and its variants here. This produces a measure known as the variance. Variance
provides a very commonly used measure of risk in financial contexts and is one of
the bases of the notion of efficient portfolio selection in finance and the Capital
Asset Pricing Model, which is used to explicitly show the trade-off between risk and
return of assets in a capital market.

We first illustrate the calculation of the variance by using the probability
distribution shown in Table 2.2 "Claims and Fire Losses ($) for Homes in Location
B". We already calculated the expected value to be $1.008 million, so we may
calculate the variance to be (.01) × (–10.2 –1.008)2 + (.1) × (–.5 –1.008)2+ (.4) × (.1 –
1.008)2+ (.4) × (1 – 1.008)2 + (.09) × (8 – 1.008)2 = 7.445. Usually, variance is denoted
with the Greek symbol sigma squared, σ2, or simply V.

As another example, Table 2.4 "Variance and Standard Deviation of Fire Claims of
Location A" and Table 2.5 "Variance and Standard Deviation of Fire Claims of
Location B" show the calculation of the variance for the two samples of claims given
in locations A and B of Table 2.1 "Claims and Fire Losses for Group of Homes in
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Location A" and Table 2.2 "Claims and Fire Losses ($) for Homes in Location B",
respectively. In this case, the years are all treated equally so the average squared
deviation from the mean is just the simple average of the five years squared
deviations from the mean. We calculate the variance of the number of claims only.

Table 2.4 Variance and Standard Deviation of Fire Claims of Location A

Year
Number of

Fire Claims
Difference between Observed Number of Claims

and Mean Number of Claims
Difference

Squared

1 11 0.8 0.64

2 9 −1.2 1.44

3 7 −3.2 10.24

4 10 −0.2 0.04

5 14 3.8 14.44

Total 51 0 26.8

Mean 10.2
= (26.8)/4 =
6.7

Variance 6.70

Standard Deviation = Square Root (6.7) = 2.59

Table 2.5 Variance and Standard Deviation of Fire Claims of Location B

Year
Number of

Fire Claims
Difference between Observed Number of Claims

and Mean Number of Claims
Difference

Squared

1 15 4.8 23.04

2 5 −5.2 27.04

3 12 1.8 3.24

4 10 −0.2 0.04

5 9 −1.2 1.44

Total 51 0 54.8

Mean 10.2
=(54.8)/4 =
13.70

Variance 13.70

Standard Deviation 3.70
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A problem with the variance as a measure of risk is that by squaring the individual
deviations from the mean, you end up with a measure that is in squared units (e.g.,
if the original losses are measured in dollars, then the variance is measured in
dollars-squared). To get back to the original units of measurement we commonly
take the square root and obtain a risk measure known as the standard deviation,
denoted by the Greek letter sigma (σ). To provide a more meaningful measure of
risk denominated in the same units as the original data, economists and risk
professionals often use this square root of the variance—the standard deviation—as
a measure of risk. It provides a value comparable with the original expected
outcomes. Remember that variance uses squared differences; therefore, taking the
square root returns the measure to its initial unit of measurement.

Thus, the standard deviation is the square root of the variance. For the distribution
in Table 2.3 "Opportunity and Loss Assessment Consequences of New Product
Market Entry", we calculated the variance to be 7.445, so the standard deviation is
the square root of 7.445 or $2.73 million. Similarly, the standard deviations of
locations A and B of Table 2.1 "Claims and Fire Losses for Group of Homes in
Location A" and Table 2.2 "Claims and Fire Losses ($) for Homes in Location B"
appear in Tables 2.4 and 2.5. As you can see, the standard deviation of the sample
for Location A is only 2.59, while the standard deviation of the sample of Location B
is 2.70. The number of fire claims in Location B is more spread out from year to year
than those in Location A. The standard deviation is the numeric representation of
that spread.

If we compare one standard deviation with another distribution of equal mean but
larger standard deviation—as when we compare the claims distribution from
Location A with Location B—we could say that the second distribution with the
larger standard deviation is riskier than the first. It is riskier because the
observations are, on average, further away from the mean (more spread out and
hence providing more “surprise” potential) than the observations in the first
distribution. Larger standard deviations, therefore, represent greater risk,
everything else being the same.

Of course, distributions seldom have the same mean. What if we are comparing two
distributions with different means? In this case, one approach would be to consider
the coefficient of variation6, which is the standard deviation of a distribution
divided by its mean. It essentially trades off risk (as measured by the standard
deviation) with the return (as measured by the mean or expected value). The
coefficient of variation can be used to give us a relative value of risk when the
means of the distributions are not equal.

6. The standard deviation of a
distribution divided by its
mean.
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The Semivariance

The above measures of risk gave the same attention or importance to both positive
and negative deviations from the mean or expected value. Some people prefer to
measure risk by the surprises in one direction only. Usually only negative
deviations below the expected value are considered risky and in need of control or
management. For example, a decision maker might be especially troubled by
deviations below the expected level of profit and would welcome deviations above
the expected value. For this purpose a “semivariance” could serve as a more
appropriate measure of risk than the variance, which treats deviations in both
directions the same. The semivariance7 is the average square deviation. Now you
sum only the deviations below the expected value. If the profit-loss distribution is
symmetric, the use of the semivariance turns out to result in the exact same
ranking of uncertain outcomes with respect to risk as the use of the variance. If the
distribution is not symmetric, however, then these measures may differ and the
decisions made as to which distribution of uncertain outcomes is riskier will differ,
and the decisions made as to how to manage risk as measured by these two
measures may be different. As most financial and pure loss distributions are
asymmetric, professionals often prefer the semi-variance in financial analysis as a
measure of risk, even though the variance (and standard deviation) are also
commonly used.

Value at Risk (VaR) and Maximum Probable Annual Loss (MPAL)

How do banks and other financial institutions manage the systemic or fundamental
market risks they face? VaR8 modeling has become the standard risk measurement
tool in the banking industry to assess market risk exposure. After the banking
industry adopted VaR, many other financial firms adopted it as well. This is in part
because of the acceptance of this technique by regulators, such as conditions
written in the Basel II agreements on bank regulation.Basel Committee on Banking
Supervision (BCBS), International Convergence of Capital Measurement and Capital
Standards: A Revised Framework (Basel, Switzerland, 2004). Further, financial
institutions need to know how much money they need to reserve to be able to
withstand a shock or loss of capital and still remain solvent. To do so, they need a
risk measure with a specified high probability. Intuitively, VaR is defined as the
worst-case scenario dollar value loss (up to a specified probability level) that could
occur for a company exposed to a specific set of risks (interest rates, equity prices,
exchange rates, and commodity prices). This is the amount needed to have in
reserve in order to stave off insolvency with the specified level of probability.

In reality, for many risk exposures the absolute “worst-case” loss that could be
experienced is conceivably unbounded. It’s conceivable that you could lose a very
huge amount but it may be highly unlikely to lose this much. Thus, instead of

7. The average square deviation
of values in a distribution.

8. The worst-case scenario dollar
value loss (up to a specified
probability level) that could
occur for a company exposed
to a specific set of risks.
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picking the largest possible loss to prepare against, the firm selects a probability
level they can live with (usually, they are interested in having their financial risk
exposure covered something like 95 percent or 99 percent of the time), and they
ask, “What is the worst case that can happen up to being covered 95 percent or 99
percent of the time?” For a given level of confidence (in this case 95 percent or 99
percent) and over a specified time horizon, VaR can measure risks in any single
security (either a specific investment represented in their investment securities or
loan from a specific customer) or an entire portfolio as long as we have sufficient
historical data. VaR provides an answer to the question “What is the worst loss that
could occur and that I should prepare for?”

In practice, professionals examine a historical record of returns for the asset or
portfolio under consideration and construct a probability distribution of returns. If
you select a 95 percent VaR, then you pick the lowest 5 percent of the distribution,
and when multiplied by the asset or portfolio value, you obtain the 95 percent VaR.
If a 99 percent VaR is desired, then the lowest 1 percent of the return distribution is
determined and this is multiplied by the asset or portfolio value to obtain the 99
percent VaR.

Figure 2.6 The 95 percent VaR for the Profit and Loss Distribution of Figure 2.2 "Possible Outcomes for a Roll of
Two Dice with the Probability of Having a Particular Number of Dots Facing Up"
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We illustrate this further with the Figure 2.6, concerning Hometown Bank.

Case: Hometown Bank Market Risk

Market risk is the change in market value of bank assets and liabilities resulting
from changing market conditions. For example, as interest rates increase, the loans
Hometown Bank made at low fixed rates become less valuable to the bank. The total
market values of their assets decline as the market value of the loans lose value. If
the loans are traded in the secondary market, Hometown would record an actual
loss. Other bank assets and liabilities are at risk as well due to changing market
prices. Hometown accepts equity positions as collateral (e.g., a mortgage on the
house includes the house as collateral) against loans that are subject to changing
equity prices. As equity prices fall, the collateral against the loan is less valuable. If
the price decline is precipitous, the loan could become undercollateralized where
the value of the equity, such as a home, is less than the amount of the loan taken
and may not provide enough protection to Hometown Bank in case of customer
default.

Another example of risk includes bank activities in foreign exchange services. This
subjects them to currency exchange rate risk. Also included is commodity price risk
associated with lending in the agricultural industry.

Hometown Bank has a total of $65.5 million in investment securities. Typically,
banks hold these securities until the money is needed by bank customers as loans,
but the Federal Reserve requires that some money be kept in reserve to pay
depositors who request their money back. Hometown has an investment policy that
lists its approved securities for investment. Because the portfolio consists of
interest rate sensitive securities, as interest rates rise, the value of the securities
declines.Valuation of bonds is covered in general finance text. Bond value = present
value of coupons + present value of face value of bond. Hometown Bank’s CEO, Mr.
Allen, is interested in estimating his risk over a five-day period as measured by the
worst case he is likely to face in terms of losses in portfolio value. He can then hold
that amount of money in reserve so that he can keep from facing liquidity
problems. This problem plagued numerous banks during the financial crisis of late
2008. Allen could conceivably lose the entire $65.5 million, but this is incredibly
unlikely. He chooses a level of risk coverage of 99 percent and chooses to measure
this five-day potential risk of loss by using the 99 percent—the VaR or value at risk.
That is, he wants to find the amount of money he needs to keep available so that he
has a supply of money sufficient to meet demand with probability of at least 0.99.
To illustrate the computation of VaR, we use a historical database to track the value
of the different bonds held by Hometown Bank as investment securities. How many
times over a given time period—one year, in our example—did Hometown
experience negative price movement on their investments and by how much? To
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simplify the example, we will assume the entire portfolio is invested in two-year
U.S. Treasury notes. A year of historical data would create approximately 250 price
movement data points for the portfolio.The number 250 comes from a rough
estimate of the number of days securities can be traded in the open market during
any given year. Fifty-two weeks at five days per week yields 260 weekdays, and
there are roughly ten holidays throughout the year for which the market is closed.
Of those 250 results, how frequently did the portfolio value decrease 5 percent or
more from the beginning value? What was the frequency of times the portfolio of
U.S. Treasury notes increased in value more than 5 percent? Hometown Bank can
now construct a probability distribution of returns by recording observations of
portfolio performance. This probability distribution appears in Figure 2.7
"Hometown Bank Frequency Distribution of Daily Price Movement of Investment
Securities Portfolio".

Figure 2.7 Hometown Bank Frequency Distribution of Daily Price Movement of Investment Securities Portfolio

The frequency distribution curve of price movement for the portfolio appears in
Figure 2.4 "Possible Profitability from Three Potential Research and Development
Projects". From that data, Hometown can measure a portfolio’s 99 percent VaR for a
five-day period by finding the lower one percentile for the probability distribution.
VaR describes the probability of potential loss in value of the U.S. Treasury notes
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that relates to market price risk. From the chart, we observe that the bottom 1
percent of the 250 observations is about a 5 percent loss, that is, 99 percent of the
time the return is greater than –5 percent. Thus, the 99 percent VaR on the returns
is –5 percent. The VaR for the portfolio is the VaR on the return times $65.5 million,
or –.05 × ($65.5 million) = −$3,275,000. This answers the question of how much risk
capital the bank needs to hold against contingencies that should only occur once in
one hundred five-day periods, namely, they should hold $3,275,000 in reserve. With
this amount of money, the likelihood that the movements in market values will
cause a loss of more than $3,275,000 is 1 percent.

The risk can now be communicated with the statement: Under normal market
conditions, the most the investment security portfolio will lose in value over a five-day
period is about $3,275,000 with a confidence level of 99 percent.Philippe Jorion, Value at
Risk: The New Benchmark for Managing Financial Risk, 2nd ed. (McGraw Hill, 2001), ch.
1. Chapter 1 "The Nature of Risk: Losses and Opportunities".

In the context of pure risk exposures, the equivalent notion to VaR is the Maximal
Probable Annual Loss (MPAL). As with the VaR measure, it looks at a probability
distribution, in this case of losses over a year period and then picks the selected
lower percentile value as the MPAL. For example, if the loss distribution is given by
Figure 2.3 "Normal Distribution of Potential Profit from a Research and
Development Project", and the 95 percent level of confidence is selected, then the
MPAL is the same as the 95 percent VaR value. In insurance contexts one often
encounters the term MPAL, whereas in finance one often encounters the term VaR.
Their calculation is the same and their interpretation as a measure of risk is the
same.

We also note that debate rages about perceived weaknesses in using VaR as a risk
measure in finance. “In short, VaR models do not provide an accurate measure of
the losses that occur in extreme events. You simply cannot depict the full texture
and range of your market risks with VaR alone.”Gleason, chapter 12. In addition,
the VaR examines the size of loss that would occur only 1 percent of the time, but it
does not specify the size of the shortfall that the company would be expected to
have to make up by a distress liquidation of assets should such a large loss occur.
Another measure called the expected shortfall is used for this. The interested
reader is referred to Brockett and AiPatrick L. Brockett and Jing Ai, “Enterprise Risk
Management (ERM),” in Encyclopedia of Quantitative Risk Assessment and Analysis, ed.
E. Melnick and B. Everitt (Chichester, UK: John Wiley & Sons Ltd., 2008), 559–66. for
this calculation.
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CAPM’s Beta Measure of Nondiversifiable Portfolio Risk

Some risk exposures affect many assets of a firm at the same time. In finance, for
example, movements in the market as a whole or in the entire economy can affect
the value of many individual stocks (and firms) simultaneously. We saw this very
dramatically illustrated in the financial crisis in 2008–2009 where the entire stock
market went down and dragged many stocks (and firms) down with it, some more
than others. In Chapter 1 "The Nature of Risk: Losses and Opportunities" we
referred to this type of risk as systematic, fundamental, or nondiversifiable risk. For
a firm (or individual) having a large, well-diversified portfolio of assets, the total
negative financial impact of any single idiosyncratic risk on the value of the
portfolio is minimal since it constitutes only a small fraction of their wealth.

Therefore, the asset-specific idiosyncratic risk is generally ignored when making
decisions concerning the additional amount of risk involved when acquiring an
additional asset to be added to an already well-diversified portfolio of assets. The
question is how to disentangle the systematic from the nonsystematic risk
embedded in any asset. Finance professors Jack Treynor, William Sharpe, John
Lintner, and Jan Mossin worked independently and developed a model called the
Capital Asset Pricing Model (CAPM). From this model we can get a measure of how
the return on an asset systematically varies with the variations in the market, and
consequently we can get a measure of systematic risk. The idea is similar to the old
adage that a rising tide lifts all ships. In this case a rising (or falling) market or
economy rises (or lowers) all assets to a greater or lesser degree depending on their
covariation with the market. This covariation with the market is fundamental to
obtaining a measure of systematic risk. We develop it now.

Essentially, the CAPM model assumes that investors in assets expect to be
compensated for both the time value of money and the systematic or
nondiversifiable risk they bear. In this regard, the return on an asset A, RA, is

assumed to be equal to the return on an absolutely safe or risk-free investment, rf

(the time value of money part) and a risk premium9, which measures the
compensation for the systematic risk they are bearing. To measure the amount of
this systematic risk, we first look at the correlation between the returns on the
asset and the returns on a market portfolio of all assets. The assumption is that the
market portfolio changes with changes in the economy as a whole, and so
systematic changes in the economy are reflected by changes in the level of the
market portfolio. The variation of the asset returns with respect to the market
returns is assumed to be linear and so the general framework is expressed as

RA= rf + βA*(Rm - rf ) + ε,9. The premium over and above
the actuarially fair premium
that a risk-averse person is
willing to pay to get rid of risk.
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where ε denotes a random term that is unrelated to the market return. Thus the
term βA × (Rm − rf ) represents a systematic return and ε represents a firm-specific

or idiosyncratic nonsystematic component of return.

Notice that upon taking variances, we have σ2
A = .β2

A × β2
m, + σ2

ε, so the first term

is called the systematic variance and the second term is the idiosyncratic or firm-
specific variance.

The idea behind the CAPM is that investors would be compensated for the
systematic risk and not the idiosyncratic risk, since the idiosyncratic risk should be
diversifiable by the investors who hold a large diversified portfolio of assets, while
the systematic or market risk affects them all. In terms of expected values, we often
write the equation as

which is the so-called CAPM model. In this regard the expected rate of return on an
asset E[RA], is the risk-free investment, rf, plus a market risk premium equal to βA ×

(E[Rm] − Rf). The coefficient βA is called the market risk or systematic risk of asset A.

By running a linear regression of the returns experienced on asset A with those
returns experienced on a market portfolio (such as the Dow Jones Industrial stock
portfolio) and the risk-free asset return (such as the U.S. T-Bill rate of return), one
can find the risk measure βA. A regression is a statistical technique that creates a

trend based on the data. An actual linear regression to compute future frequency
and severity based on a trend is used in Chapter 4 "Evolving Risk Management:
Fundamental Tools" for risk management analysis. Statistical books showSee
Patrick Brockett and Arnold Levine Brockett, Statistics, Probability and Their
Applications (W. B. Saunders Publishing Co., 1984). that βA. = COV(RA, Rm)/β2

m

where COV(RA,Rm) is the covariance of the return on the asset with the return on

the market and is defined by

that is, the average value of the product of the deviation of the asset return from its
expected value and the market returns from its expected value. In terms of the
correlation coefficient ρAm between the return on the asset and the market, we

have βA = ρAm × (βA/βm), so we can also think of beta as scaling the asset volatility

by the market volatility and the correlation of the asset with the market.

E[RA]= rf+βA*(E[Rm ]-rf),

COV(RA , Rm ) = E[{RA ,−E(RA)} × { Rm ,-E(Rm )}],
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The β (beta) term in the above equations attempts to quantify the risk associated
with market fluctuations or swings in the market. A beta of 1 means that the asset
return is expected to move in conjunction with the market, that is, a 5 percent
move (measured in terms of standard deviation units of the market) in the market
will result in a 5 percent move in the asset (measured in terms of standard
deviation units of the asset). A beta less than one indicates that the asset is less
volatile than the market in that when the market goes up (or down) by 5 percent
the asset will go up (or down) by less than 5 percent. A beta greater than one means
that the asset price is expected to move more rapidly than the market so if the
market goes up (or down) by 5 percent then the asset will go up (or down) by more
than 5 percent. A beta of zero indicates that the return on the asset does not
correlate with the returns on the market.

KEY TAKEAWAYS

• Risk measures quantify the amount of surprise potential contained in a
probability distribution.

• Measures such as the range and Value at Risk (VaR) and Maximal
Probable Annual Loss (MPAL) focus on the extremes of the distributions
and are appropriate measures of risk when interest is focused on
solvency or making sure that enough capital is set aside to handle any
realized extreme losses.

• Measures such as the variance, standard deviation, and semivariance are
useful when looking at average deviations from what is expected for the
purpose of planning for expected deviations from expected results.

• The market risk measure from the Capital Asset Pricing Model is useful
when assessing systematic financial risk or the additional risk involved
in adding an asset to an already existing diversified portfolio.
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DISCUSSION QUESTIONS

1. Compare the relative risk of Insurer A to Insurer B in the
following questions.

a. Which insurer carries more risk in losses and which carries
more claims risk? Explain.

b. Compare the severity and frequency of the insurers as well.

2. The experience of Insurer A for the last three years as given in
Problem 2 was the following::

Year
Number of
Exposures

Number of Collision
Claims

Collision
Losses ($)

1 10,000 375 350,000

2 10,000 330 250,000

3 10,000 420 400,000

a. What is the range of collision losses per year?
b. What is the standard deviation of the losses per year?
c. Calculate the coefficient of variation of the losses per year.
d. Calculate the variance of the number of claims per year.

3. The experience of Insurer B for the last three years as given in
Problem 3 was the following:

Year
Number of
Exposures

Number of Collision
Claims

Collision
Losses

1 20,000 975 650,000

2 20,000 730 850,000

3 20,000 820 900,000

a. What is the range of collision losses?
b. Calculate the variance in the number of collision claims per

year.
c. What is the standard deviation of the collision losses?
d. Calculate the coefficient of collision variation.
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e. Comparing the results of Insurer A and Insurer B, which
insurer has a riskier book of business in terms of the range of
possible losses they might experience?

f. Comparing the results of Insurer A and Insurer B, which
insurer has a riskier book of business in terms of the
standard deviation in the collision losses they might
experience?
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2.3 Review and Practice

1. The Texas Department of Insurance publishes data on all the insurance
claims closed during a given year. For the thirteen years from 1990 to
2002 the following table lists the percentage of medical malpractice
claims closed in each year for which the injury actually occurred in the
same year.

Year % of injuries in the year that are closed in that year

1990 0.32

1991 1.33

1992 0.86

1993 0.54

1994 0.69

1995 0.74

1996 0.76

1997 1.39

1998 1.43

1999 0.55

2000 0.66

2001 0.72

2002 1.06

Calculate the average percentage of claims that close in the same year
as the injury occurs.

2. From the same Texas Department of Insurance data on closed claims
for medical malpractice liability insurance referred to in Problem 1, we
can estimate the number of claims in each year of injury that will be
closed in the next 16 years. We obtain the following data. Here the
estimated dollars per claim for each year have been adjusted to 2007
dollars to account for inflation, so the values are all compatible. Texas
was said to have had a “medical malpractice liability crisis” starting in
about 1998 and continuing until the legislature passed tort reforms
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effective in September 2003, which put caps on certain noneconomic
damage awards. During this period premiums increased greatly and
doctors left high-risk specialties such as emergency room service and
delivering babies, and left high-risk geographical areas as well causing
shortages in doctors in certain locations. The data from 1994 until 2001
is the following:

Injury year Estimated # claims Estimated $ per claim

1994 1021 $415,326.26

1995 1087 $448,871.57

1996 1184 $477,333.66

1997 1291 $490,215.19

1998 1191 $516,696.63

1999 1098 $587,233.93

2000 1055 $536,983.82

2001 1110 $403,504.39

a. Calculate the mean or average number of claims per year for
medical malpractice insurance in Texas over the four-year period
1994–1997.

b. Calculate the mean or average number of claims per year for
medical malpractice insurance in Texas over the four-year period
1998–2001.

c. Calculate the mean or average dollar value per claim per year for
medical malpractice insurance in Texas over the four-year period
1994–1997 (in 2009 dollars).

d. Calculate the mean or average dollar value per claim per year for
medical malpractice insurance in Texas over the four-year period
1998–2001 (in 2009 dollars).

e. Looking at your results from (a) to (e), do you think there is any
evidence to support the conclusion that costs were rising for
insurers, justifying the rise in premiums?

3. Referring back to the Texas Department of Insurance data on closed
claims for medical malpractice liability insurance presented in
Problem 5, we wish to see if medical malpractice was more risky to the
insurer during the 1998–2001 period than it was in the 1994–1997
period. The data from 1994 until 2001 was:

Chapter 2 Risk Measurement and Metrics

2.3 Review and Practice 89



Injury year Estimated # claims Estimated $ per claim

1994 1021 $415,326.26

1995 1087 $448,871.57

1996 1184 $477,333.66

1997 1291 $490,215.19

1998 1191 $516,696.63

1999 1098 $587,233.93

2000 1055 $536,983.82

2001 1110 $403,504.39

a. Calculate the standard deviation in the estimated payment per
claim for medical malpractice insurance in Texas over the four-
year period 1994–1997.

b. Calculate the standard deviation in the estimated payment per
claim for medical malpractice insurance in Texas over the four-
year period 1998–2001.

c. Which time period was more risky (in terms of the standard
deviation in payments per claim)?

d. Using the results of (c) above, do you think the medical
malpractice insurers raising rates during the period 1998–2001 was
justified on the basis of assuming additional risk?

Chapter 2 Risk Measurement and Metrics

2.3 Review and Practice 90


	Licensing
	Chapter 2 Risk Measurement and Metrics
	2.1 Quantification of Uncertainty via Probability Models
	2.2 Measures of Risk: Putting It Together
	2.3 Review and Practice


