This is “Concentrations as Conversion Factors”, section 11.4 from the book Beginning Chemistry (v. 1.0). For details on it (including licensing), click here.

For more information on the source of this book, or why it is available for free, please see the project's home page. You can browse or download additional books there. To download a .zip file containing this book to use offline, simply click here.

Has this book helped you? Consider passing it on:
Creative Commons supports free culture from music to education. Their licenses helped make this book available to you.
DonorsChoose.org helps people like you help teachers fund their classroom projects, from art supplies to books to calculators.

11.4 Concentrations as Conversion Factors

Learning Objective

  1. Apply concentration units as conversion factors.

Concentration can be a conversion factor between the amount of solute and the amount of solution or solvent (depending on the definition of the concentration unit). As such, concentrations can be useful in a variety of stoichiometry problems. In many cases, it is best to use the original definition of the concentration unit; it is that definition that provides the conversion factor.

A simple example of using a concentration unit as a conversion factor is one in which we use the definition of the concentration unit and rearrange; we can do the calculation again as a unit conversion, rather than as a definition. For example, suppose we ask how many moles of solute are present in 0.108 L of a 0.887 M NaCl solution. Because 0.887 M means 0.887 mol/L, we can use this second expression for the concentration as a conversion factor:

0.108 L NaCl×0.887 mol NaCl L NaCl=0.0958 mol NaCl

(There is an understood 1 in the denominator of the conversion factor.) If we used the definition approach, we get the same answer, but now we are using conversion factor skills. Like any other conversion factor that relates two different types of units, the reciprocal of the concentration can be also used as a conversion factor.

Example 10

Using concentration as a conversion factor, how many liters of 2.35 M CuSO4 are needed to obtain 4.88 mol of CuSO4?

Solution

This is a one-step conversion, but the concentration must be written as the reciprocal for the units to work out:

4.88 mol CuSO4×1 L2.35 mol=2.08 L of solution

Test Yourself

Using concentration as a conversion factor, how many liters of 0.0444 M CH2O are needed to obtain 0.0773 mol of CH2O?

Answer

1.74 L

Of course, once quantities in moles are available, another conversion can give the mass of the substance, using molar mass as a conversion factor.

Example 11

What mass of solute is present in 0.765 L of 1.93 M NaOH?

Solution

This is a two-step conversion, first using concentration as a conversion factor to determine the number of moles and then the molar mass of NaOH (40.0 g/mol) to convert to mass:

0.765 L×1.93 mol NaOH L solution×40.0 g NaOH1 mol NaOH=59.1 g NaOH

Test Yourself

What mass of solute is present in 1.08 L of 0.0578 M H2SO4?

Answer

6.12 g

More complex stoichiometry problems using balanced chemical reactions can also use concentrations as conversion factors. For example, suppose the following equation represents a chemical reaction:

2AgNO3(aq) + CaCl2(aq) → 2AgCl(s) + Ca(NO3)2(aq)

If we wanted to know what volume of 0.555 M CaCl2 would react with 1.25 mol of AgNO3, we first use the balanced chemical equation to determine the number of moles of CaCl2 that would react and then use concentration to convert to liters of solution:

1.25 mol AgNO3×1  mol CaCl 22  mol AgNO 3×1 L solution0.555  mol CaCl 2=1.13 L CaCl2

This can be extended by starting with the mass of one reactant, instead of moles of a reactant.

Example 12

What volume of 0.0995 M Al(NO3)3 will react with 3.66 g of Ag according to the following chemical equation?

3Ag(s) + Al(NO3)3(aq) → 3AgNO3 + Al(s)

Solution

Here, we first must convert the mass of Ag to moles before using the balanced chemical equation and then the definition of molarity as a conversion factor:

3.66 g Ag× mol Ag107.97 g Ag×1  mol Al(NO 3)33 mol Ag×1 L solution0.0995  mol Al(NO 3)3=0.114 L

The strikeouts show how the units cancel.

Test Yourself

What volume of 0.512 M NaOH will react with 17.9 g of H2C2O4(s) according to the following chemical equation?

H2C2O4(s) + 2NaOH(aq) → Na2C2O4(aq) + 2H2O(ℓ)

Answer

0.777 L

We can extend our skills even further by recognizing that we can relate quantities of one solution to quantities of another solution. Knowing the volume and concentration of a solution containing one reactant, we can determine how much of another solution of another reactant will be needed using the balanced chemical equation.

Example 13

A student takes a precisely measured sample, called an aliquot, of 10.00 mL of a solution of FeCl3. The student carefully adds 0.1074 M Na2C2O4 until all the Fe3+(aq) has precipitated as Fe2(C2O4)3(s). Using a precisely measured tube called a burette, the student finds that 9.04 mL of the Na2C2O4 solution was added to completely precipitate the Fe3+(aq). What was the concentration of the FeCl3 in the original solution? (A precisely measured experiment like this, which is meant to determine the amount of a substance in a sample, is called a titration.) The balanced chemical equation is as follows:

2FeCl3(aq) + 3Na2C2O4(aq) → Fe2(C2O4)3(s) + 6NaCl(aq)

Solution

First we need to determine the number of moles of Na2C2O4 that reacted. We will convert the volume to liters and then use the concentration of the solution as a conversion factor:

9.04 mL ×1 L1,000 mL×0.1074 mol Na2C2O4 L=0.000971 mol Na2C2O4

Now we will use the balanced chemical equation to determine the number of moles of Fe3+(aq) that were present in the initial aliquot:

0.000971 mol Na2C2O4×2 mol FeCl33  mol Na 2C2O4=0.000647 mol FeCl3

Then we determine the concentration of FeCl3 in the original solution. Converting 10.00 mL into liters (0.01000 L), we use the definition of molarity directly:

M=molL=0.000647 mol FeCl30.01000 L=0.0647 M FeCl3

Test Yourself

A student titrates 25.00 mL of H3PO4 with 0.0987 M KOH. She uses 54.06 mL to complete the chemical reaction. What is the concentration of H3PO4?

H3PO4(aq) + 3KOH(aq) → K3PO4(aq) + 3H2O

Answer

0.0711 M

When a student performs a titration, a measured amount of one solution is added to another reactant.

We have used molarity exclusively as the concentration of interest, but that will not always be the case. The next example shows a different concentration unit being used.

Example 14

H2O2 is used to determine the amount of Mn according to this balanced chemical equation:

2MnO4(aq) + 5H2O2(aq) + 6H+(aq) → 2Mn2+(aq) + 5O2(g) + 8H2O(ℓ)

What mass of 3.00% m/m H2O2 solution is needed to react with 0.355 mol of MnO4(aq)?

Solution

Because we are given an initial amount in moles, all we need to do is use the balanced chemical equation to determine the number of moles of H2O2 and then convert to find the mass of H2O2. Knowing that the H2O2 solution is 3.00% by mass, we can determine the mass of solution needed:

0.355 mol MnO4×5  mol H 2O22  mol MnO 4×34.02  g H 2O2  mol H 2O2×100 g solution3  g H 2O2=1,006 g solution

The first conversion factor comes from the balanced chemical equation, the second conversion factor is the molar mass of H2O2, and the third conversion factor comes from the definition of percentage concentration by mass.

Test Yourself

Use the balanced chemical reaction for MnO4 and H2O2 to determine what mass of O2 is produced if 258 g of 3.00% m/m H2O2 is reacted with MnO4.

Answer

7.28 g

Key Takeaway

  • Know how to apply concentration units as conversion factors.

Exercises

  1. Using concentration as a conversion factor, how many moles of solute are in 3.44 L of 0.753 M CaCl2?

  2. Using concentration as a conversion factor, how many moles of solute are in 844 mL of 2.09 M MgSO4?

  3. Using concentration as a conversion factor, how many liters are needed to provide 0.822 mol of NaBr from a 0.665 M solution?

  4. Using concentration as a conversion factor, how many liters are needed to provide 2.500 mol of (NH2)2CO from a 1.087 M solution?

  5. What is the mass of solute in 24.5 mL of 0.755 M CoCl2?

  6. What is the mass of solute in 3.81 L of 0.0232 M Zn(NO3)2?

  7. What volume of solution is needed to provide 9.04 g of NiF2 from a 0.332 M solution?

  8. What volume of solution is needed to provide 0.229 g of CH2O from a 0.00560 M solution?

  9. What volume of 3.44 M HCl will react with 5.33 mol of CaCO3?

    2HCl + CaCO3 → CaCl2 + H2O + CO2
  10. What volume of 0.779 M NaCl will react with 40.8 mol of Pb(NO3)2?

    Pb(NO3)2 + 2NaCl → PbCl2 + 2NaNO3
  11. What volume of 0.905 M H2SO4 will react with 26.7 mL of 0.554 M NaOH?

    H2SO4 + 2NaOH → Na2SO4 + 2H2O
  12. What volume of 1.000 M Na2CO3 will react with 342 mL of 0.733 M H3PO4?

    3Na2CO3 + 2H3PO4 → 2Na3PO4 + 3H2O + 3CO2
  13. It takes 23.77 mL of 0.1505 M HCl to titrate with 15.00 mL of Ca(OH)2. What is the concentration of Ca(OH)2? You will need to write the balanced chemical equation first.

  14. It takes 97.62 mL of 0.0546 M NaOH to titrate a 25.00 mL sample of H2SO4. What is the concentration of H2SO4? You will need to write the balanced chemical equation first.

  15. It takes 4.667 mL of 0.0997 M HNO3 to dissolve some solid Cu. What mass of Cu can be dissolved?

    Cu + 4HNO3(aq) → Cu(NO3)2(aq) + 2NO2 + 2H2O
  16. It takes 49.08 mL of 0.877 M NH3 to dissolve some solid AgCl. What mass of AgCl can be dissolved?

    AgCl(s) + 4NH3(aq) → Ag(NH3)4Cl(aq)
  17. What mass of 3.00% H2O2 is needed to produce 66.3 g of O2(g)?

    2H2O2(aq) → 2H2O(ℓ) + O2(g)
  18. A 0.75% solution of Na2CO3 is used to precipitate Ca2+ ions from solution. What mass of solution is needed to precipitate 40.7 L of solution with a concentration of 0.0225 M Ca2+(aq)?

    Na2CO3(aq) + Ca2+(aq) → CaCO3(s) + 2Na+(aq)

Answers

  1. 2.59 mol

  2. 1.24 L

  3. 2.40 g

  4. 0.282 L

  5. 3.10 L

  6. 8.17 mL

  7. 0.1192 M

  8. 7.39 mg

  9. 4.70 kg